Computation of large covariance matrices having a block structure up to a permutation of their columns and rows from a small number of samples with respect to the dimension of the matrix. The method is described in the paper Perrot-Dockès et al. (2019) <doi:10.48550/arXiv.1806.10093>.
| Version: | 0.1.1 | 
| Imports: | Matrix, stats, Rdpack, BBmisc, dplyr, tibble, magrittr, rlang | 
| Suggests: | knitr | 
| Published: | 2019-04-13 | 
| DOI: | 10.32614/CRAN.package.BlockCov | 
| Author: | M. Perrot-Dock\`es, C. Lévy-Leduc | 
| Maintainer: | Marie Perrot-Dockès <marie.perrocks at gmail.com> | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| NeedsCompilation: | no | 
| CRAN checks: | BlockCov results | 
| Reference manual: | BlockCov.html , BlockCov.pdf | 
| Vignettes: | BlockCov package (source, R code) | 
| Package source: | BlockCov_0.1.1.tar.gz | 
| Windows binaries: | r-devel: BlockCov_0.1.1.zip, r-release: BlockCov_0.1.1.zip, r-oldrel: BlockCov_0.1.1.zip | 
| macOS binaries: | r-release (arm64): BlockCov_0.1.1.tgz, r-oldrel (arm64): BlockCov_0.1.1.tgz, r-release (x86_64): BlockCov_0.1.1.tgz, r-oldrel (x86_64): BlockCov_0.1.1.tgz | 
| Old sources: | BlockCov archive | 
Please use the canonical form https://CRAN.R-project.org/package=BlockCov to link to this page.