CRE 0.2.5 (2024-4-21)
Added
- A copy of inTrees package source code.
Removed
- The inTrees package dependency
CRE 0.2.5 (2023-12-6)
Added
- Add (vanilla) Stability Selection (without Error Control).
- max_ruleshyper parameters for max rules
filtering.
- Uncertainty Quantification in estimation by bootstrapping.
- Bhyper-parameter,
- subsamplehyper-parameter.
- rules(implicit form) in cre() function return.
- predict() function for ITE estimation via CRE.
Changed
- Type stability_selectionbinary -> string
(‘no’,‘vanilla’,‘error_control’).
- Unify ntrees_gbmhyper-parameter andntrees_gbmhyper-parameter inntreeshyper-parameter.
- In rules generation retrieve decision rules also from internal
nodes, and not just from terminal nodes.
- ite_method_dis,- ite_method_infmethod-parameter ->- ite_method.
- ps_method_dis,- ps_method_infmethod-parameter ->- learner_ps.
- oreg_method_dis,- oreg_method_infmethod-parameter ->- learner_y.
Removed
- max_nodeshyper-parameter.
- Remove rules generation by Generalized Boosted Regression.
- replacehyper-parameter.
- penalty_rlhyper-parameter.
- t_pvaluehyper-parameter.
- ite_predfrom cre() function return.
Bug fixes
- Error saving covariates name in CRE result when using
intervention_vars.
CRE 0.2.4 (2023-6-14)
Changed
- Method paper description is updated.
CRE 0.2.3 (2023-4-27)
Removed
- Bayesian Causal Forest (bcf) ITE estimator is not
supported.
CRE 0.2.2 (2023-4-17)
Changed
- Fixed failing unit tests on specific operating systems.
CRE 0.2.1 (2023-3-17)
Changed
- Replace BATE with ATE in CATE Linear Decomposition.
- Update plot()function (remove ATE, old BATE, and
explicit AATEs).
Added
Removed
- Causal Tree benchmark in functional tests.
Bug fixes
- Rank-Deficient Rule Matrix Issue (redundant rules).
- Intervention Variables Filtering (ordered filtering).
CRE 0.2.0 (2023-1-19)
Changed
- offsetmethod-parameter -> hyper-parameter
- estimate_ite_poissonfunction ->- estimate_ite_tpoisson
- max_dacayhyper-parameter ->- t_decay.
- interpret_select_rulesfunction ->- interpret_rules.
- generate_causal_rulesfunction ->- discover_rules.
- discover_causal_rulesfunction
->- select_rules.
- offset_namemethod parameter ->- offset.
- Hyper and method parameters are no more required arguments for
cre.
- creobject: added parameters and ite estimation.
Added
- Synthetic data set with 1 or 3 rules
(generate_cre_dataset).
- S-Learner (slearner) method for ITE estimation.
- T-Learner (tlearner) method for ITE estimation.
- X-Learner (xlearner) method for ITE estimation.
- Rules Selection description in summary.cre.
- verboseparameter in- summary.cre.
- ite, additional- creinput parameter to use
personalized ite estimations.
- Default values for hyper parameters.
- Default values for method parameters.
- Simulation experiments for estimation
(estimation.R).
- Simulation experiments for discovery
(discovery.R).
- extract_effect_modifiersfunction (utility for
performance evaluation).
- evaluatefunction for discovery evaluation.
- confoundingparameter in- generate_cre_datasetto set confounding type.
- ite_predand- modelin CRE results.
- binary_covariatesparameter in- generate_cre_datasetto set covariates domain.
Removed
- include_ps_infmethod-parameter.
- include_ps_dismethod-parameter.
- oregmethod for ITE estimation.
- ipwmethod for ITE estimation.
- sipwmethod for ITE estimation.
- ITE standard deviation estimation.
- type_decayhyper-parameter.
- Keep only linregfor CATE estimation (removecate_methodandcate_SL_libraryparameters).
- method_paramsand- hyper_paramsadditional
parameters in- summary.cre.
- ite standardization for Rules Generation.
- random_stateparameter.
- include_offsetmethod parameter.
Bug fixes
- Rules Generation Issue (set rules length and fix
bootstrapping).
CRE 0.1.1 (2022-10-18)
Changed
- binaryparameter in- generate_cre_dataset->- binary_outcome.
- filter_catehyper-parameter ->- t_pvalue.
- t_anomhyper-parameter ->- t_ext.
- effect_modifierhyper-parameter ->- intervention_vars.
- lasso_rules_filterfunction ->- discover_causal_rules.
- split_datafunction ->- honest_splitting.
- prune_rulesfunction ->
`- filter_irrelevant_rules.
- discard_correlated_rulesfunction ->- filter_correlated_rules.
- discard_anomalous_rulesfunction ->- filter_extreme_rules.
Added
- Weighted LASSO for Causal Rules Discovery (by
penalty_rlhyper-parameter).
CRE 0.1.0 (2022-10-17)
Changed
- Update examples and tests for all functions.
- qhyper-parameter ->- cutoff.
- pfer_valhyper-parameter ->- pfer.
- select_causal_rulesfunction ->- lasso_rules_filter.
- thyper-parameter ->- t_anom.
- Separate standardization, and remove filtering from
generate_rules_matrixfunction.
- summary.crefunction to describe results.
- min_nodeshyper-parameter ->- node_size(- randomForestconvention).
- crereturns an S3 object.
Added
- Examples and tests for all functions.
- prune_rulesfunction to discard un-predictive
rules.
- discard_anomalous_rulesfunction to discard anomalous
rules (see- t_corrhyper-parameter.).
- discard_correlated_rulesfunction to discard correlated
rules (see- t_anomhyper-parameter).
- effect_modifiersparameter in- generate_rulesfunction for covariates filtering.
- generate_causal_rulesfunction.
- Helper function with SuperLearnerpackage for
propensity score estimation inestimate_ite_xyz.
- Five methods for CATE estimation (poisson,DRLearner,bart-baggr,cf-means,linreg) inestimate_catefunction.
- (ps_method_dis,ps_method_inf,or_method_dis,or_method_inf,cate_SL_library) method-parameters to complementSuperLearnerpackage.
- cate_methodmethod-parameter to select CATE estimation
method.
- filter_catemethod-parameter for estimation
filtering.
- pparameter (in- generate_cre_datasetfunction) to set the number of covariates.
- replaceparameter (in- generate_rulesfunction) to allow bootstrapping.
- cre.printgeneric function to print- creS3
object results.
- cre.summarygeneric functions to summarize- creS3 object Results.
- check_inputfunction to isolate input checks.
- estimate_ite_aipwfunction for augmented inverse
propensity weighting.
- plot.cregeneric function to plot- creS3
object results.
- test-cre_functional.Rto test the functionality of the
package.
- stability_selectionfunction for causal rules
selection.
Removed
- estimate_ite_blpfunction.
- take1()function.
Bug fixes
- Undesired ‘All’ Decision Rule Issue.
- No Causal Rule Selected Issue.
CRE 0.0.1 (2021-10-20)
Changed
- estimate_cateinclude two methods for estimating the
CATE values.
- creadded initial checks for binary outcome and whether
to include the propensity score in the ITE estimation.
- estimate_ite_xyzconduct propensity score estimation
using helper function.
Added
- Example for generate_cre_dataset.
- set_loggerand- get_logger.
- check_input_datafunction.
- generate_cre_datasetfunction to generate synthetic
data for testing the package.
- test-generate_cre_datasetfunction test.
- estimate_psfunction to estimate the propensity
score.
- estimate_ite_xbartfunction to generate ITE estimates
using accelerated BART.
- estimate_ite_xbcffunction to generate ITE estimates
using accelerated BCF.
- analyze_sensitivityfunction to conduct sensitivity
analysis for unmeasured confounding.
- crefunction to perform the entire Causal Rule Ensemble
method.
- estimate_catefunction to generate CATE estimates from
the ITE estimates and select rules.
- estimate_itefunction to generate ITE estimates using
the user-specified method (calls the other- estimate_ite_xyzfunctions).
- estimate_ite_bartfunction to generate ITE estimates
using BART.
- estimate_ite_bcffunction to generate ITE estimates
using Bayesian Causal Forests.
- estimate_ite_cffunction to generate ITE estimates
using Causal Forests.
- estimate_ite_ipwfunction to generate ITE estimates
using IPW.
- estimate_ite_orfunction to generate ITE estimates
using Outcome Regression.
- estimate_ite_sipwfunction to generate ITE estimates
using SIPW.
- extract_rulesfunction to extract a list of causal
rules from randomForest and GBM models.
- generate_rulesfunction to generate causal rule models
using randomForest and GBM methods.
- generate_rules_matrixfunction to convert a list of
causal rules into a matrix.
- select_causal_rulesfunction to apply penalized
regression to causal rules. to select only the most important ones.
- split_datafunction to split input data into discovery
and inference subsamples.
- take1function to create a subsample of indices.
Removed
- seedargument in- generate_cre_datasefunction.