---
title: "Beta distribution"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Distributions-Beta}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
========================================================
Probability density function:
-------------------------
$$f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}} {\mathcal{B}(\alpha,\beta)}$$
with $\alpha$ and $\beta$ two shape parameters and $\mathcal B$ beta function.
Cumulative distribution function:
-------------------------
$$F(x) = \frac{\int_{0}^{x} y^{\alpha-1}(1-y)^{\beta-1}dy} {\mathcal{B}(\alpha,\beta)}
=\mathcal{B}(x; \alpha,\beta)$$
with $\mathcal B (x; \alpha,\beta)$ incomplete beta function.
Log-likelihood function:
-------------------------
$$L(\alpha,\beta;X)=\sum_i\left[ (\alpha-1)\ln(x)+(\beta-1)\ln(1-x)-\ln \mathcal{B}(\alpha,\beta) \right]$$
Score function vector:
-------------------------
$$V(\mu,\sigma;X)
=\left( \begin{array}{c}
\frac{\partial L}{\partial \alpha} \\
\frac{\partial L}{\partial \beta}
\end{array} \right)
=\sum_i
\left( \begin{array}{c}
\psi^{(0)}(\alpha+\beta)-\psi^{(0)}(\alpha)+\ln(x) \\
\psi^{(0)}(\alpha+\beta)-\psi^{(0)}(\beta)+\ln(x)
\end{array} \right)
$$
with $\psi^{(0)}$ being log-gamma function.
Observed information matrix:
-------------------------
$$\mathcal J (\mu,\sigma;X)=
\left( \begin{array}{cc}
\psi^{(1)}(\alpha)-\psi^{(1)}(\alpha+\beta) & -\psi^{(1)}(\alpha+\beta) \\
-\psi^{(1)}(\alpha+\beta) & \psi^{(1)}(\beta)-\psi^{(1)}(\alpha+\beta) \end{array} \right)
$$
with $\psi^{(1)}$ being digamma function.