Ordered homogeneity pursuit lasso (OHPL) algorithm for group variable selection proposed in Lin et al. (2017) <doi:10.1016/j.chemolab.2017.07.004>. The OHPL method exploits the homogeneity structure in high-dimensional data and enjoys the grouping effect to select groups of important variables automatically. This feature makes it particularly useful for high-dimensional datasets with strongly correlated variables, such as spectroscopic data.
| Version: | 1.4.1 | 
| Depends: | R (≥ 3.0.2) | 
| Imports: | glmnet, mvtnorm, pls | 
| Published: | 2024-07-20 | 
| DOI: | 10.32614/CRAN.package.OHPL | 
| Author: | You-Wu Lin [aut],
  Nan Xiao | 
| Maintainer: | Nan Xiao <me at nanx.me> | 
| BugReports: | https://github.com/nanxstats/OHPL/issues | 
| License: | GPL-3 | file LICENSE | 
| URL: | https://ohpl.io, https://ohpl.io/doc/, https://github.com/nanxstats/OHPL | 
| NeedsCompilation: | no | 
| Citation: | OHPL citation info | 
| Materials: | README, NEWS | 
| CRAN checks: | OHPL results | 
| Reference manual: | OHPL.html , OHPL.pdf | 
| Package source: | OHPL_1.4.1.tar.gz | 
| Windows binaries: | r-devel: OHPL_1.4.1.zip, r-release: OHPL_1.4.1.zip, r-oldrel: OHPL_1.4.1.zip | 
| macOS binaries: | r-release (arm64): OHPL_1.4.1.tgz, r-oldrel (arm64): OHPL_1.4.1.tgz, r-release (x86_64): OHPL_1.4.1.tgz, r-oldrel (x86_64): OHPL_1.4.1.tgz | 
| Old sources: | OHPL archive | 
Please use the canonical form https://CRAN.R-project.org/package=OHPL to link to this page.