Implements a novel predictive model, Partially Interpretable Estimators (PIE), which jointly trains an interpretable model and a black-box model to achieve high predictive performance as well as partial model. See the paper, Wang, Yang, Li, and Wang (2021) <doi:10.48550/arXiv.2105.02410>.
| Version: | 1.0.0 | 
| Depends: | R (≥ 3.5.0), gglasso, xgboost | 
| Imports: | splines, stats | 
| Suggests: | knitr, rmarkdown | 
| Published: | 2025-01-27 | 
| DOI: | 10.32614/CRAN.package.PIE | 
| Author: | Tong Wang [aut], Jingyi Yang [aut, cre], Yunyi Li [aut], Boxiang Wang [aut] | 
| Maintainer: | Jingyi Yang <jy4057 at stern.nyu.edu> | 
| License: | GPL-2 | 
| NeedsCompilation: | no | 
| Citation: | PIE citation info | 
| CRAN checks: | PIE results | 
| Reference manual: | PIE.html , PIE.pdf | 
| Vignettes: | Introduction to PIE – A Partially Interpretable Model with Black-box Refinement (source) | 
| Package source: | PIE_1.0.0.tar.gz | 
| Windows binaries: | r-devel: PIE_1.0.0.zip, r-release: PIE_1.0.0.zip, r-oldrel: PIE_1.0.0.zip | 
| macOS binaries: | r-release (arm64): PIE_1.0.0.tgz, r-oldrel (arm64): PIE_1.0.0.tgz, r-release (x86_64): PIE_1.0.0.tgz, r-oldrel (x86_64): PIE_1.0.0.tgz | 
Please use the canonical form https://CRAN.R-project.org/package=PIE to link to this page.