
https://doi.org/10.32614/CRAN.package.Patterns
It is designed to work with patterned data. Famous examples of problems related to patterned data are:
It allows for single or joint modeling of, for instance, genes and proteins.
Patterns package and dedicated to get specific
features for the inferred network such as
sparsity, robust links, high
confidence links or stable through resampling
links.
lars packageglmnet package. An
unweighted and a weighted version of the algorithm are availablespls packageelasticnet
packagec060
package implementation of stability selectionc060 package implementation of stability
selection that I created for the packagelars package
with light random Gaussian noise added to the explanatory variablesselectboost
package. The selectboost algorithm looks for the more stable links
against resampling that takes into account the correlated structure of
the predictorsselectboost.The weights are viewed as a penalty factors in the penalized regression model: it is a number that multiplies the lambda value in the minimization problem to allow differential shrinkage, Friedman et al. 2010, equation 1 page 3. If equal to 0, it implies no shrinkage, and that variable is always included in the model. Default is 1 for all variables. Infinity means that the variable is excluded from the model. Note that the weights are rescaled to sum to the number of variables.
A word for those that have been using our seminal work, the
Cascade package that we created several years ago and that
was a very efficient network reverse engineering tool for cascade
networks (Jung, N., Bertrand, F., Bahram, S., Vallat, L., and
Maumy-Bertrand, M. (2014), https://doi.org/10.1093/bioinformatics/btt705, https://cran.r-project.org/package=Cascade, https://github.com/fbertran/Cascade and https://fbertran.github.io/Cascade/).
The Patterns package is more than (at least) a threeway
major extension of the Cascade package :
Cascade package only 1 group for each timepoint could be
created, which prevented the users to create homogeneous clusters of
genes in datasets that featured more than a few dozens of genes.Cascade package only 1 shape
was provided:
Cascade.Hence the Patterns package should be viewed more as a
completely new modelling tools than as an extension of the
Cascade package.
This website and these examples were created by F. Bertrand and M. Maumy-Bertrand.
You can install the released version of Patterns from CRAN with:
install.packages("Patterns")You can install the development version of Patterns from github with:
devtools::install_github("fbertran/Patterns")Import Cascade Data (repeated measurements on several subjects) from the CascadeData package and turn them into a omics array object. The second line makes sure the CascadeData package is installed.
library(Patterns)if(!require(CascadeData)){install.packages("CascadeData")}
data(micro_US)
micro_US<-as.omics_array(micro_US[1:100,],time=c(60,90,210,390),subject=6)
str(micro_US)
#> Formal class 'omics_array' [package "Patterns"] with 7 slots
#>   ..@ omicsarray: num [1:100, 1:24] 103.2 26 70.7 213.7 13.7 ...
#>   .. ..- attr(*, "dimnames")=List of 2
#>   .. .. ..$ : chr [1:100] "1007_s_at" "1053_at" "117_at" "121_at" ...
#>   .. .. ..$ : chr [1:24] "N1_US_T60" "N1_US_T90" "N1_US_T210" "N1_US_T390" ...
#>   ..@ name      : chr [1:100] "1007_s_at" "1053_at" "117_at" "121_at" ...
#>   ..@ gene_ID   : num 0
#>   ..@ group     : num 0
#>   ..@ start_time: num 0
#>   ..@ time      : num [1:4] 60 90 210 390
#>   ..@ subject   : num 6Get a summay and plots of the data:
summary(micro_US)
#>    N1_US_T60        N1_US_T90        N1_US_T210       N1_US_T390    
#>  Min.   :  12.2   Min.   :  12.9   Min.   :   1.5   Min.   :  10.1  
#>  1st Qu.: 177.7   1st Qu.: 198.7   1st Qu.: 189.0   1st Qu.: 196.7  
#>  Median : 513.0   Median : 499.4   Median : 608.5   Median : 541.2  
#>  Mean   :1386.6   Mean   :1357.7   Mean   :1450.4   Mean   :1331.2  
#>  3rd Qu.:1912.3   3rd Qu.:1883.4   3rd Qu.:2050.2   3rd Qu.:1646.2  
#>  Max.   :6348.4   Max.   :6507.3   Max.   :6438.5   Max.   :6351.4  
#>    N2_US_T60        N2_US_T90        N2_US_T210       N2_US_T390    
#>  Min.   :  16.7   Min.   :   3.4   Min.   :   5.5   Min.   :   6.1  
#>  1st Qu.: 212.4   1st Qu.: 185.7   1st Qu.: 214.7   1st Qu.: 230.1  
#>  Median : 584.1   Median : 501.5   Median : 596.0   Median : 601.8  
#>  Mean   :1381.9   Mean   :1345.4   Mean   :1410.5   Mean   :1403.7  
#>  3rd Qu.:1616.2   3rd Qu.:1830.5   3rd Qu.:2005.8   3rd Qu.:1901.7  
#>  Max.   :6149.3   Max.   :6090.8   Max.   :6160.6   Max.   :6143.1  
#>    N3_US_T60        N3_US_T90        N3_US_T210       N3_US_T390    
#>  Min.   :   1.9   Min.   :  10.3   Min.   :   3.3   Min.   :   6.6  
#>  1st Qu.: 187.4   1st Qu.: 194.6   1st Qu.: 177.8   1st Qu.: 222.6  
#>  Median : 611.4   Median : 576.2   Median : 552.2   Median : 593.7  
#>  Mean   :1365.4   Mean   :1381.2   Mean   :1310.1   Mean   :1427.1  
#>  3rd Qu.:1855.2   3rd Qu.:2040.2   3rd Qu.:1784.5   3rd Qu.:2131.7  
#>  Max.   :6636.6   Max.   :6515.5   Max.   :6530.4   Max.   :6177.2  
#>    N4_US_T60        N4_US_T90        N4_US_T210       N4_US_T390    
#>  Min.   :  20.2   Min.   :  15.6   Min.   :  19.8   Min.   :   9.3  
#>  1st Qu.: 199.3   1st Qu.: 215.4   1st Qu.: 207.0   1st Qu.: 197.8  
#>  Median : 610.8   Median : 614.0   Median : 544.9   Median : 590.7  
#>  Mean   :1505.1   Mean   :1526.7   Mean   :1401.6   Mean   :1458.8  
#>  3rd Qu.:2198.1   3rd Qu.:2168.9   3rd Qu.:1831.2   3rd Qu.:1984.8  
#>  Max.   :6986.2   Max.   :7148.0   Max.   :6820.0   Max.   :6762.3  
#>    N5_US_T60        N5_US_T90        N5_US_T210       N5_US_T390    
#>  Min.   :   3.4   Min.   :  10.0   Min.   :  10.7   Min.   :  16.5  
#>  1st Qu.: 213.2   1st Qu.: 209.8   1st Qu.: 202.0   1st Qu.: 208.2  
#>  Median : 609.4   Median : 561.3   Median : 555.6   Median : 570.5  
#>  Mean   :1498.2   Mean   :1424.8   Mean   :1394.1   Mean   :1435.3  
#>  3rd Qu.:2008.7   3rd Qu.:1906.5   3rd Qu.:1923.9   3rd Qu.:1867.8  
#>  Max.   :7268.2   Max.   :6857.8   Max.   :6574.0   Max.   :6896.6  
#>    N6_US_T60        N6_US_T90        N6_US_T210       N6_US_T390    
#>  Min.   :  13.0   Min.   :   6.6   Min.   :   3.8   Min.   :  14.4  
#>  1st Qu.: 207.5   1st Qu.: 198.6   1st Qu.: 203.9   1st Qu.: 195.8  
#>  Median : 516.2   Median : 530.6   Median : 578.0   Median : 580.0  
#>  Mean   :1412.9   Mean   :1388.3   Mean   :1416.5   Mean   :1360.8  
#>  3rd Qu.:2037.4   3rd Qu.:1889.8   3rd Qu.:2030.8   3rd Qu.:1872.6  
#>  Max.   :6898.1   Max.   :6749.4   Max.   :6490.0   Max.   :6780.2


plot(micro_US)
There are several functions to carry out gene selection before the inference. They are detailed in the vignette of the package.
Let’s simulate some cascade data and then do some reverse engineering.
We first design the F matrix for \(T_i=4\) times and \(Ngrp=4\) groups. The
Fmatobject is an array of sizes \((T_i,T-i,Ngrp^2)=(4,4,16)\).
Ti<-4
Ngrp<-4
Fmat=array(0,dim=c(Ti,Ti,Ngrp^2))
for(i in 1:(Ti^2)){
  if(((i-1) %% Ti) > (i-1) %/% Ti){
    Fmat[,,i][outer(1:Ti,1:Ti,function(x,y){0<(x-y) & (x-y)<2})]<-1
    }
}The Patterns function CascadeFinit is an
utility function to easily define such an F matrix.
Fbis=Patterns::CascadeFinit(Ti,Ngrp,low.trig=FALSE)
str(Fbis)
#>  num [1:4, 1:4, 1:16] 0 0 0 0 0 0 0 0 0 0 ...Check if the two matrices Fmat and Fbis are
identical.
print(all(Fmat==Fbis))
#> [1] TRUEEnd of F matrix definition.
Fmat[,,3]<-Fmat[,,3]*0.2
Fmat[3,1,3]<-1
Fmat[4,2,3]<-1
Fmat[,,4]<-Fmat[,,3]*0.3
Fmat[4,1,4]<-1
Fmat[,,8]<-Fmat[,,3]We set the seed to make the results reproducible and draw a scale free random network.
set.seed(1)
Net<-Patterns::network_random(
  nb=100,
  time_label=rep(1:4,each=25),
  exp=1,
  init=1,
  regul=round(rexp(100,1))+1,
  min_expr=0.1,
  max_expr=2,
  casc.level=0.4
)
Net@F<-Fmat
str(Net)
#> Formal class 'omics_network' [package "Patterns"] with 6 slots
#>   ..@ omics_network: num [1:100, 1:100] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..@ name         : chr [1:100] "gene 1" "gene 2" "gene 3" "gene 4" ...
#>   ..@ F            : num [1:4, 1:4, 1:16] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..@ convF        : num [1, 1] 0
#>   ..@ convO        : num 0
#>   ..@ time_pt      : int [1:4] 1 2 3 4Plot the simulated network.
Patterns::plot(Net, choice="network")If a gene clustering is known, it can be used as a coloring scheme.
plot(Net, choice="network", gr=rep(1:4,each=25))Plot the F matrix, for low dimensional F matrices.
plot(Net, choice="F") 
plot of chunk plotF
Plot the F matrix using the pixmap package, for high
dimensional F matrices.
plot(Net, choice="Fpixmap") 
plot of chunk plotFpixmap
We simulate gene expression according to the network that was previously drawn
set.seed(1)
M <- Patterns::gene_expr_simulation(
  network=Net,
  time_label=rep(1:4,each=25),
  subject=5,
  peak_level=200,
  act_time_group=1:4)
#> Error: unable to find an inherited method for function 'gene_expr_simulation' for signature 'omics_network = "missing"'
str(M)
#>  num [1:60, 1:6] -1.495 0.368 0.517 -0.484 0.675 ...Get a summay and plots of the simulated data:
summary(M)
#> Error in h(simpleError(msg, call)): erreur d'�valuation de l'argument 'object' lors de la s�lection d'une m�thode pour la fonction 'summary' : objet 'M' introuvableplot(M)
#> Error in h(simpleError(msg, call)): erreur d'�valuation de l'argument 'x' lors de la s�lection d'une m�thode pour la fonction 'plot' : objet 'M' introuvableWe infer the new network using subjectwise leave one out cross-validation (default setting): all measurements from the same subject are removed from the dataset). The inference is carried out with a general Fshape.
Net_inf_P <- Patterns::inference(M, cv.subjects=TRUE)
#> Error in h(simpleError(msg, call)): erreur d'�valuation de l'argument 'M' lors de la s�lection d'une m�thode pour la fonction 'inference' : objet 'M' introuvablePlot of the inferred F matrix
plot(Net_inf_P, choice="F")
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'Net_inf_P' not foundHeatmap of the inferred coefficients of the Omega matrix
stats::heatmap(Net_inf_P@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
#> Error: object 'Net_inf_P' not foundDefault values fot the \(F\)
matrices. The Finit matrix (starting values for the
algorithm). In our case, the Finitobject is an array of
sizes \((T_i,T-i,Ngrp^2)=(4,4,16)\).
Ti<-4;
ngrp<-4
nF<-ngrp^2
Finit<-array(0,c(Ti,Ti,nF)) 
              for(ii in 1:nF){    
                if((ii%%(ngrp+1))==1){
                  Finit[,,ii]<-0
                } else {
                  Finit[,,ii]<-cbind(rbind(rep(0,Ti-1),diag(1,Ti-1)),rep(0,Ti))+rbind(cbind(rep(0,Ti-1),diag(1,Ti-1)),rep(0,Ti))
                }
              }The Fshape matrix (default shape for F
matrix the algorithm). Any interaction between groups and times are
permitted except the retro-actions (a group on itself, or an action at
the same time for an actor on another one).
Fshape<-array("0",c(Ti,Ti,nF)) 
for(ii in 1:nF){  
  if((ii%%(ngrp+1))==1){
    Fshape[,,ii]<-"0"
  } else {
    lchars <- paste("a",1:(2*Ti-1),sep="")
    tempFshape<-matrix("0",Ti,Ti)
    for(bb in (-Ti+1):(Ti-1)){
      tempFshape<-replaceUp(tempFshape,matrix(lchars[bb+Ti],Ti,Ti),-bb)
    }
    tempFshape <- replaceBand(tempFshape,matrix("0",Ti,Ti),0)
    Fshape[,,ii]<-tempFshape
  }
}Any other form can be used. A “0” coefficient is missing from the model. It allows testing the best structure of an “F” matrix and even performing some significance tests of hypothses on the structure of the \(F\) matrix.
The IndicFshape function allows to design custom F
matrix for cascade networks with equally spaced measurements by
specifying the zero and non zero \(F_{ij}\) cells of the \(F\) matrix. It is useful for models
featuring several clusters of actors that are activated at the time.
Let’s define the following indicatrix matrix (action of all groups on
each other, which is not a possible real modeling setting and is only
used as an example):
TestIndic=matrix(!((1:(Ti^2))%%(ngrp+1)==1),byrow=TRUE,ngrp,ngrp)
TestIndic
#>       [,1]  [,2]  [,3]  [,4]
#> [1,] FALSE  TRUE  TRUE  TRUE
#> [2,]  TRUE FALSE  TRUE  TRUE
#> [3,]  TRUE  TRUE FALSE  TRUE
#> [4,]  TRUE  TRUE  TRUE FALSEFor that choice, we get those init and shape \(F\) matrices.
IndicFinit(Ti,ngrp,TestIndic)
#> , , 1
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
#> 
#> , , 2
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 3
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 4
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 5
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 6
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
#> 
#> , , 7
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 8
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 9
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 10
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 11
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
#> 
#> , , 12
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 13
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 14
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 15
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 16
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
IndicFshape(Ti,ngrp,TestIndic)
#> , , 1
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "0"  "0"  "0"  "0" 
#> [3,] "0"  "0"  "0"  "0" 
#> [4,] "0"  "0"  "0"  "0" 
#> 
#> , , 2
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 3
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 4
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 5
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 6
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "0"  "0"  "0"  "0" 
#> [3,] "0"  "0"  "0"  "0" 
#> [4,] "0"  "0"  "0"  "0" 
#> 
#> , , 7
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 8
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 9
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 10
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 11
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "0"  "0"  "0"  "0" 
#> [3,] "0"  "0"  "0"  "0" 
#> [4,] "0"  "0"  "0"  "0" 
#> 
#> , , 12
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 13
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 14
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 15
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 16
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "0"  "0"  "0"  "0" 
#> [3,] "0"  "0"  "0"  "0" 
#> [4,] "0"  "0"  "0"  "0"Those \(F\) matrices are lower diagonal ones to enforce that an observed value at a given time can only be predicted by a value that was observed in the past only (i.e. neither at the same moment or in the future).
The plotF is convenient to display F matrices. Here are
the the displays of the three \(F\)
matrices we have just introduced.
plotF(Fshape,choice="Fshape") 
plot of chunk plotfshape1
plotF(CascadeFshape(4,4),choice="Fshape") 
plot of chunk plotfshape2
plotF(IndicFshape(Ti,ngrp,TestIndic),choice="Fshape") 
plot of chunk plotfshape3
We now fit the model with an \(F\) matrix that is designed for cascade networks.
Specific Fshape
Net_inf_P_S <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4))
#> Error in h(simpleError(msg, call)): erreur d'�valuation de l'argument 'M' lors de la s�lection d'une m�thode pour la fonction 'inference' : objet 'M' introuvablePlot of the inferred F matrix
plot(Net_inf_P_S, choice="F")
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'Net_inf_P_S' not foundHeatmap of the coefficients of the Omega matrix of the network. They reflect the use of a special \(F\) matrix. It is an example of an F matrix specifically designed to deal with cascade networks.
stats::heatmap(Net_inf_P_S@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
#> Error: object 'Net_inf_P_S' not foundThere are many fitting functions provided with the
Patterns package in order to search for specific
features for the inferred network such as
sparsity, robust links, high
confidence links or stable through resampling
links. :
lars packageglmnet package. An
unweighted and a weighted version of the algorithm are availablespls packageelasticnet
packagec060 package
implementation of stability selectionc060 package implementation of stability selectionlars package
with light random Gaussian noise added to the explanatory variablesselectboost package implementation of the selectboost
algorithm to look for the more stable links against resampling that
takes into account the correlated structure of the predictors. If no
weights are provided, equal weigths are for all the variables (=non
weighted case).Net_inf_P_Lasso2 <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="LASSO2")
#> Error in h(simpleError(msg, call)): erreur d'�valuation de l'argument 'M' lors de la s�lection d'une m�thode pour la fonction 'inference' : objet 'M' introuvablePlot of the inferred F matrix
plot(Net_inf_P_Lasso2, choice="F")
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'Net_inf_P_Lasso2' not foundHeatmap of the coefficients of the Omega matrix of the network
stats::heatmap(Net_inf_P_Lasso2@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
#> Error: object 'Net_inf_P_Lasso2' not foundWe create a weighting vector to perform weighted lasso inference.
Weights_Net=slot(Net,"network")
#> Error in slot(Net, "network"): no slot of name "network" for this object of class "omics_network"
Weights_Net[Net@network!=0]=.1        
#> Error: object 'Weights_Net' not found
Weights_Net[Net@network==0]=1000
#> Error: object 'Weights_Net' not foundNet_inf_P_Lasso2_Weighted <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="LASSO2", priors=Weights_Net)
#> Error in h(simpleError(msg, call)): erreur d'�valuation de l'argument 'M' lors de la s�lection d'une m�thode pour la fonction 'inference' : objet 'M' introuvablePlot of the inferred F matrix
plot(Net_inf_P_Lasso2_Weighted, choice="F")
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'Net_inf_P_Lasso2_Weighted' not foundHeatmap of the coefficients of the Omega matrix of the network
stats::heatmap(Net_inf_P_Lasso2_Weighted@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
#> Error: object 'Net_inf_P_Lasso2_Weighted' not foundNet_inf_P_SPLS <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="SPLS")
#> Error in h(simpleError(msg, call)): erreur d'�valuation de l'argument 'M' lors de la s�lection d'une m�thode pour la fonction 'inference' : objet 'M' introuvablePlot of the inferred F matrix
plot(Net_inf_P_SPLS, choice="F")
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'Net_inf_P_SPLS' not foundHeatmap of the coefficients of the Omega matrix of the network
stats::heatmap(Net_inf_P_SPLS@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
#> Error: object 'Net_inf_P_SPLS' not foundNet_inf_P_ELASTICNET <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="ELASTICNET")
#> Error in h(simpleError(msg, call)): erreur d'�valuation de l'argument 'M' lors de la s�lection d'une m�thode pour la fonction 'inference' : objet 'M' introuvablePlot of the inferred F matrix
plot(Net_inf_P_ELASTICNET, choice="F")
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'Net_inf_P_ELASTICNET' not foundHeatmap of the coefficients of the Omega matrix of the network
stats::heatmap(Net_inf_P_ELASTICNET@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
#> Error: object 'Net_inf_P_ELASTICNET' not foundNet_inf_P_stability <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="stability.c060")
#> Error in h(simpleError(msg, call)): erreur d'�valuation de l'argument 'M' lors de la s�lection d'une m�thode pour la fonction 'inference' : objet 'M' introuvablePlot of the inferred F matrix
plot(Net_inf_P_stability, choice="F")
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'Net_inf_P_stability' not foundHeatmap of the coefficients of the Omega matrix of the network
stats::heatmap(Net_inf_P_stability@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
#> Error: object 'Net_inf_P_stability' not foundNet_inf_P_StabWeight <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="stability.c060.weighted", priors=Weights_Net)
#> Error in h(simpleError(msg, call)): erreur d'�valuation de l'argument 'M' lors de la s�lection d'une m�thode pour la fonction 'inference' : objet 'M' introuvablePlot of the inferred F matrix
plot(Net_inf_P_StabWeight, choice="F")
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'Net_inf_P_StabWeight' not foundHeatmap of the coefficients of the Omega matrix of the network
stats::heatmap(Net_inf_P_StabWeight@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
#> Error: object 'Net_inf_P_StabWeight' not foundNet_inf_P_Robust <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="robust")
#> Error in h(simpleError(msg, call)): erreur d'�valuation de l'argument 'M' lors de la s�lection d'une m�thode pour la fonction 'inference' : objet 'M' introuvablePlot of the inferred F matrix
plot(Net_inf_P_Robust, choice="F")
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'Net_inf_P_Robust' not foundHeatmap of the coefficients of the Omega matrix of the network
stats::heatmap(Net_inf_P_Robust@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
#> Error: object 'Net_inf_P_Robust' not foundWeights_Net_1 <- Weights_Net
#> Error in eval(expr, envir, enclos): objet 'Weights_Net' introuvable
Weights_Net_1[,] <- 1
#> Error in Weights_Net_1[, ] <- 1: objet 'Weights_Net_1' introuvable
Net_inf_P_SelectBoost <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="selectboost.weighted",priors=Weights_Net_1)
#> Error in h(simpleError(msg, call)): erreur d'�valuation de l'argument 'M' lors de la s�lection d'une m�thode pour la fonction 'inference' : objet 'M' introuvable#> 
#> Attaching package: 'Patterns'
#> The following object is masked from 'package:testthat':
#> 
#>     compare
#> The following object is masked from 'package:igraph':
#> 
#>     comparePlot of the inferred F matrix
plot(Net_inf_P_SelectBoost, choice="F")
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'Net_inf_P_SelectBoost' not foundHeatmap of the coefficients of the Omega matrix of the network
stats::heatmap(Net_inf_P_SelectBoost@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
#> Error: object 'Net_inf_P_SelectBoost' not foundNet_inf_P_SelectBoostWeighted <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="selectboost.weighted",priors=Weights_Net)
#> Error in h(simpleError(msg, call)): erreur d'�valuation de l'argument 'M' lors de la s�lection d'une m�thode pour la fonction 'inference' : objet 'M' introuvable#> 
#> Attaching package: 'Patterns'
#> The following object is masked from 'package:testthat':
#> 
#>     compare
#> The following object is masked from 'package:igraph':
#> 
#>     comparePlot of the inferred F matrix
plot(Net_inf_P_SelectBoostWeighted, choice="F")
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'Net_inf_P_SelectBoostWeighted' not foundHeatmap of the coefficients of the Omega matrix of the network
stats::heatmap(Net_inf_P_SelectBoostWeighted@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
#> Error: object 'Net_inf_P_SelectBoostWeighted' not foundSuch an analysis is only required if the model was not fitted using the stability selection or the selectboost algorithm.
Create an animation of the network with increasing cutoffs with an animated .gif format or a html webpage in the working directory.
data(network)
sequence<-seq(0,0.2,length.out=20)
evolution(network,sequence,type.ani = "gif", outdir=getwd())
evolution(network,sequence,type.ani = "html", outdir=getwd())#> Error in setwd(outdir): cannot change working directory
#> Error in setwd(outdir): cannot change working directory 
Evolution of some properties of a reverse-engineered network with
increasing cut-off values. 
We switch to data that were derived from the inferrence of a real
biological network and try to detect the optimal cutoff value: the best
cutoff value for a network to fit a scale free network. The
cutoff was validated only single group cascade networks
(number of actors groups = number of timepoints) and for genes dataset.
Instead of the cutoff function, manual curation or the
stability selection or the selectboost algorithm should be used.
data("networkCascade")
set.seed(1)
cutoff(networkCascade)
#> Error in (function (classes, fdef, mtable) : impossible de trouver une méthode héritée pour la fonction 'cutoff' pour la signature '"network"'Analyze the network with a cutoff set to the previouly found 0.133 optimal value.
analyze_network(networkCascade,nv=0.133)
#> Error in (function (classes, fdef, mtable) : impossible de trouver une méthode héritée pour la fonction 'analyze_network' pour la signature '"network"'data(Selection)
plot(networkCascade,nv=0.133, gr=Selection@group) 
plot of chunk plotnet
Import data.
library(Patterns)
library(CascadeData)
data(micro_S)
micro_S<-as.omics_array(micro_S,time=c(60,90,210,390),subject=6,gene_ID=rownames(micro_S))
data(micro_US)
micro_US<-as.omics_array(micro_US,time=c(60,90,210,390),subject=6,gene_ID=rownames(micro_US))Select early genes (t1 or t2):
Selection1<-geneSelection(x=micro_S,y=micro_US,20,wanted.patterns=rbind(c(0,1,0,0),c(1,0,0,0),c(1,1,0,0)))Section genes with first significant differential expression at t1:
Selection2<-geneSelection(x=micro_S,y=micro_US,20,peak=1)Section genes with first significant differential expression at t2:
Selection3<-geneSelection(x=micro_S,y=micro_US,20,peak=2)Select later genes (t3 or t4)
Selection4<-geneSelection(x=micro_S,y=micro_US,50,
wanted.patterns=rbind(c(0,0,1,0),c(0,0,0,1),c(1,1,0,0)))Merge those selections:
Selection<-unionOmics(Selection1,Selection2)
Selection<-unionOmics(Selection,Selection3)
Selection<-unionOmics(Selection,Selection4)
head(Selection)
#> $omicsarray
#>                    US60       US90      US210
#> 210226_at    0.82417544  0.9166931  0.7310784
#> 233516_s_at -0.27395188 -2.3695246  0.6511830
#> 202081_at    0.60477249  0.6599672 -0.1884742
#> 236719_at   -2.07284086 -0.3123747  0.1792494
#> 236019_at   -0.08175065 -0.3699708 -0.4315901
#> 1563563_at  -1.44513486  1.6869516 -0.4297297
#> 
#> $name
#> [1] "210226_at"   "233516_s_at" "202081_at"   "236719_at"   "236019_at"   "1563563_at" 
#> 
#> $gene_ID
#> [1] "210226_at"   "233516_s_at" "202081_at"   "236719_at"   "236019_at"   "1563563_at" 
#> 
#> $group
#> [1] 1 2 1 1 1 1
#> 
#> $start_time
#> [1] 1 2 1 1 1 1
#> 
#> $time
#> [1]  60  90 210 390
#> 
#> $subject
#> [1] 6Summarize the final selection:
summary(Selection)
#>       US60               US90               US210             US390         
#>  Min.   :-2.76841   Min.   :-2.369525   Min.   :-1.6147   Min.   :-2.60480  
#>  1st Qu.:-0.18028   1st Qu.:-0.181425   1st Qu.: 0.1985   1st Qu.:-0.03884  
#>  Median : 0.05675   Median :-0.001924   Median : 0.9886   Median : 0.31766  
#>  Mean   : 0.05764   Mean   : 0.278275   Mean   : 0.9611   Mean   : 0.26428  
#>  3rd Qu.: 0.22438   3rd Qu.: 0.664063   3rd Qu.: 1.6918   3rd Qu.: 0.57117  
#>  Max.   : 2.86440   Max.   : 4.284675   Max.   : 3.6727   Max.   : 2.54704  
#>       US60              US90              US210              US390         
#>  Min.   :-2.7932   Min.   :-2.49245   Min.   :-1.21606   Min.   :-1.74407  
#>  1st Qu.:-0.5547   1st Qu.:-0.01944   1st Qu.: 0.07967   1st Qu.:-0.26548  
#>  Median :-0.3089   Median : 0.14977   Median : 0.72019   Median : 0.03616  
#>  Mean   :-0.2917   Mean   : 0.33720   Mean   : 0.73063   Mean   : 0.06753  
#>  3rd Qu.:-0.1725   3rd Qu.: 0.48744   3rd Qu.: 1.26164   3rd Qu.: 0.32496  
#>  Max.   : 2.0267   Max.   : 3.37588   Max.   : 3.87950   Max.   : 2.83321  
#>       US60               US90             US210             US390        
#>  Min.   :-2.94444   Min.   :-0.9721   Min.   :-1.9349   Min.   :-3.8418  
#>  1st Qu.:-0.23136   1st Qu.:-0.1027   1st Qu.: 0.3254   1st Qu.:-0.1592  
#>  Median :-0.04761   Median : 0.2548   Median : 1.2512   Median : 0.1538  
#>  Mean   : 0.22116   Mean   : 0.6479   Mean   : 1.0485   Mean   : 0.1219  
#>  3rd Qu.: 0.33157   3rd Qu.: 1.0737   3rd Qu.: 1.8513   3rd Qu.: 0.6268  
#>  Max.   : 3.31723   Max.   : 4.3604   Max.   : 4.4860   Max.   : 1.9886  
#>       US60               US90              US210              US390         
#>  Min.   :-2.85438   Min.   :-0.90355   Min.   :-0.83324   Min.   :-0.96834  
#>  1st Qu.:-0.06031   1st Qu.:-0.08464   1st Qu.: 0.07605   1st Qu.: 0.01569  
#>  Median : 0.03601   Median : 0.17135   Median : 0.52176   Median : 0.17370  
#>  Mean   : 0.14593   Mean   : 0.41929   Mean   : 0.62446   Mean   : 0.23854  
#>  3rd Qu.: 0.24568   3rd Qu.: 0.75564   3rd Qu.: 1.07821   3rd Qu.: 0.45189  
#>  Max.   : 1.82903   Max.   : 3.60640   Max.   : 2.27744   Max.   : 1.90880  
#>       US60               US90              US210             US390        
#>  Min.   :-1.38002   Min.   :-2.94444   Min.   :-1.0271   Min.   :-1.3636  
#>  1st Qu.:-0.19910   1st Qu.:-0.01758   1st Qu.: 0.1459   1st Qu.:-0.1386  
#>  Median :-0.07962   Median : 0.16080   Median : 0.7430   Median : 0.1492  
#>  Mean   : 0.12972   Mean   : 0.37123   Mean   : 0.7972   Mean   : 0.1271  
#>  3rd Qu.: 0.26113   3rd Qu.: 0.61933   3rd Qu.: 1.3922   3rd Qu.: 0.4825  
#>  Max.   : 2.31074   Max.   : 3.24454   Max.   : 3.6213   Max.   : 1.5979  
#>       US60               US90              US210             US390         
#>  Min.   :-1.79176   Min.   :-3.20791   Min.   :-1.4716   Min.   :-1.95883  
#>  1st Qu.:-0.09822   1st Qu.:-0.03963   1st Qu.: 0.1292   1st Qu.:-0.04786  
#>  Median : 0.03378   Median : 0.28261   Median : 0.8392   Median : 0.22472  
#>  Mean   : 0.27978   Mean   : 0.52529   Mean   : 0.7903   Mean   : 0.21171  
#>  3rd Qu.: 0.33548   3rd Qu.: 1.03256   3rd Qu.: 1.4416   3rd Qu.: 0.42511  
#>  Max.   : 3.16035   Max.   : 3.19975   Max.   : 2.8027   Max.   : 2.14903 
plot of chunk omicsselection6
 
plot of chunk omicsselection6
 
plot of chunk omicsselection6
Plot the final selection:
plot(Selection) 
plot of chunk omicsselection7
 
plot of chunk omicsselection7
 
plot of chunk omicsselection7
 
plot of chunk omicsselection7
 
plot of chunk omicsselection7
 
plot of chunk omicsselection7
 
plot of chunk omicsselection7
 
plot of chunk omicsselection7
This process could be improved by retrieve a real gene_ID using the
bitr function of the ClusterProfiler package
or by performing independent filtering using jetset package
to only keep at most only probeset (the best one, if there is one good
enough) per gene_ID.
 
 
 
 
 
 
 
