| Type: | Package | 
| Date: | 2023-10-24 | 
| License: | GPL-3 | 
| Title: | Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections | 
| Version: | 2.3 | 
| Author: | Guillaume Evin [aut, cre] | 
| Maintainer: | Guillaume Evin <guillaume.evin@inrae.fr> | 
| Imports: | MASS, expm, Rfast, stats, graphics, grDevices | 
| Description: | These functions use data augmentation and Bayesian techniques for the assessment of single-member and incomplete ensembles of climate projections. It provides unbiased estimates of climate change responses of all simulation chains and of all uncertainty variables. It additionally propagates uncertainty due to missing information in the estimates. - Evin, G., B. Hingray, J. Blanchet, N. Eckert, S. Morin, and D. Verfaillie. (2019) <doi:10.1175/JCLI-D-18-0606.1>. | 
| Depends: | R (≥ 2.10) | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.2.3 | 
| NeedsCompilation: | no | 
| Packaged: | 2023-10-24 07:13:30 UTC; eving | 
| Repository: | CRAN | 
| Date/Publication: | 2023-10-24 07:30:02 UTC | 
QUALYPSO
Description
Partition uncertainty in climate responses using an ANOVA applied to climate change responses.
Usage
QUALYPSO(Y, scenAvail, X = NULL, Xfut = NULL, iFut = NULL, listOption = NULL)
Arguments
| Y | matrix  | 
| scenAvail | data.frame  | 
| X | (optional) predictors corresponding to the projections, e.g. time or global temperature.
It can be a vector if the predictor is the same for all scenarios (e.g.  | 
| Xfut | (optional)  | 
| iFut | index in  | 
| listOption | (optional) list of options 
 | 
Value
List providing the results for each of the n values of Xfut
if Y is a matrix or for each grid point if Y is an array, with the following fields:
-  CLIMATERESPONSE: list of climate change responses and corresponding internal variability. Contains phiStar(climate change responses),etaStar(deviation from the climate change responses as a result of internal variability),Ystar(change variable from the projections),andphi(fitted climate responses).
-  GRANDMEAN: List of estimates for the grand mean: -  MEAN: vector of length nof means.
-  SD: vector of length nof standard dev. ifANOVAmethod=="QUALYPSO".
-  CI: matrix nx 2 of credible intervals of probabilityprobCIgiven inlistOptionifANOVAmethod=="QUALYPSO".
-  QUANT: matrix nxnQof quantiles of probabilityquantilePosteriorgiven inlistOptionifANOVAmethod=="QUALYPSO".
 
-  
-  MAINEFFECT: List of estimates for the main effects. For each main effect (GCM, RCM,..), each element of the list contains a list with: -  MEAN: matrix nxnTypeEff
-  SD: matrix nxnTypeEffof standard dev. ifANOVAmethod=="QUALYPSO".
-  CI: array nx 2 xnTypeEffof credible intervals of probabilityprobCIgiven inlistOptionifANOVAmethod=="QUALYPSO".
-  QUANT: array nxnQxnTypeEffof quantiles of probabilityquantilePosteriorgiven inlistOptionifANOVAmethod=="QUALYPSO".
 
-  
-  CHANGEBYEFFECT: For each main effect, list of estimates for the mean change by main effect, i.e. mean change by scenario. For each main effect (GCM, RCM,..), each element of the list contains a list with: -  MEAN: matrix nxnTypeEff
-  SD: matrix nxnTypeEffof standard dev. ifANOVAmethod=="QUALYPSO".
-  CI: array nx 2 xnTypeEffof credible intervals of probabilityprobCIgiven inlistOptionifANOVAmethod=="QUALYPSO".
-  QUANT: array nxnQxnTypeEffof quantiles of probabilityquantilePosteriorgiven inlistOptionifANOVAmethod=="QUALYPSO".
 
-  
-  EFFECTVAR: Matrix nxnTypeEffgiving, for each time variability related to the main effects (i.e. variability between the different RCMs, GCMs,..).
-  CONTRIB_EACH_EFFECT: Contribution of each individual effect to its component (percentage), e.g. what is the contribution of GCM1 to the variability related to GCMs. For each main effect (GCM, RCM,..), each element of the list contains a matrix nxnTypeEff
-  RESIDUALVAR: List of estimates for the variance of the residual errors: -  MEAN: vector of length n.
-  SD: vector of length nof standard dev. ifANOVAmethod=="QUALYPSO".
-  CI: matrix nx 2 of credible intervals of probabilityprobCIgiven inlistOptionifANOVAmethod=="QUALYPSO".
-  QUANT: matrix nxnQof quantiles of probabilityquantilePosteriorgiven inlistOptionifANOVAmethod=="QUALYPSO".
 
-  
-  INTERNALVAR: Internal variability (constant over time) 
-  TOTALVAR: total variability, i.e. the sum of internal variability, residual variability and variability related to the main effects 
-  DECOMPVAR: Decomposition of the total variability for each component 
-  RESERR: differences between the climate change responses and the additive anova formula (grand mean + main effects) 
-  Xmat: matrix of predictors 
-  Xfut: future predictor values 
-  paralType: type of parallelisation (Time or Grid) 
-  namesEff: names of the main effects 
-  Y: matrix of available combinations given as inputs 
-  listOption: list of options used to obtained these results (obtained from QUALYPSO.check.option)
-  listScenarioInput: list of scenario characteristics (obtained from QUALYPSO.process.scenario)
Author(s)
Guillaume Evin
References
Evin, G., B. Hingray, J. Blanchet, N. Eckert, S. Morin, and D. Verfaillie (2020) Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation. Journal of Climate. <doi:10.1175/JCLI-D-18-0606.1>.
Examples
##########################################################################
# SYNTHETIC SCENARIOS
##########################################################################
# create nS=3 fictive climate scenarios with 2 GCMs and 2 RCMs, for a period of nY=20 years
n=20
t=1:n/n
# GCM effects (sums to 0 for each t)
effGCM1 = t*2
effGCM2 = t*-2
# RCM effects (sums to 0 for each t)
effRCM1 = t*1
effRCM2 = t*-1
# These climate scenarios are a sum of effects and a random gaussian noise
scenGCM1RCM1 = effGCM1 + effRCM1 + rnorm(n=n,sd=0.5)
scenGCM1RCM2 = effGCM1 + effRCM2 + rnorm(n=n,sd=0.5)
scenGCM2RCM1 = effGCM2 + effRCM1 + rnorm(n=n,sd=0.5)
Y.synth = rbind(scenGCM1RCM1,scenGCM1RCM2,scenGCM2RCM1)
# Here, scenAvail indicates that the first scenario is obtained with the combination of the
# GCM "GCM1" and RCM "RCM1", the second scenario is obtained with the combination of
# the GCM "GCM1" and RCM "RCM2" and the third scenario is obtained with the combination
# of the GCM "GCM2" and RCM "RCM1".
scenAvail.synth = data.frame(GCM=c('GCM1','GCM1','GCM2'),RCM=c('RCM1','RCM2','RCM1'))
##########################################################################
# RUN QUALYPSO
##########################################################################
# call main QUALYPSO function: two arguments are mandatory:
# - Y: Climate projections for nS scenarios and nY time steps. if Y is a matrix nS x nY, we
# run QUALYPSO nY times, for each time step. If Y is an array nG x nS x nY, for nG grid points,
# we run QUALYPSO nG times, for each grid point, for one time step specified using the argument
# iFut
# - scenAvail: matrix or data.frame of available combinations nS x nEff. The number of
# characteristics nEff corresponds to the number of main effects that will be included in the
# ANOVA model. In the following example, we have nEff=2 main effects corresponding to the GCMs
# and RCMs.
# Many options can be specified in the argument "listOption". When ANOVAmethod=="QUALYPSO"
# a Bayesian inference is performed. Here, we change the default values for nBurn and nKeep
# in order to speed up computation time for this small example. However, it must be noticed
# that convergence and sampling of the posterior distributions often require higher values
#  for these two arguments.
listOption = list(nBurn=100,nKeep=100,ANOVAmethod="QUALYPSO",quantilePosterior=c(0.025,0.5,0.975))
# run QUALYPSO
QUALYPSO.synth = QUALYPSO(Y=Y.synth, scenAvail=scenAvail.synth, X=2001:2020, listOption=listOption)
##########################################################################
# SOME PLOTS
##########################################################################
# plot grand mean
plotQUALYPSOgrandmean(QUALYPSO.synth,xlab="Years")
# plot main GCM effects
plotQUALYPSOeffect(QUALYPSO.synth,nameEff="GCM",xlab="Years")
# plot main RCM effects
plotQUALYPSOeffect(QUALYPSO.synth,nameEff="RCM",xlab="Years")
# plot fraction of total variance for the differences sources of uncertainty
plotQUALYPSOTotalVarianceDecomposition(QUALYPSO.synth,xlab="Years")
# plot mean prediction and total variance with the differences sources of uncertainty
plotQUALYPSOMeanChangeAndUncertainties(QUALYPSO.synth,xlab="Years")
#____________________________________________________________
# EXAMPLE OF QUALYPSO WHEN THE PREDICTOR IS TIME
#____________________________________________________________
# list of options
listOption = list(typeChangeVariable='abs')
# call QUALYPSO
QUALYPSO.time = QUALYPSO(Y=Y,scenAvail=scenAvail,X=X_time_vec,
                         Xfut=Xfut_time,listOption=listOption)
# grand mean effect
plotQUALYPSOgrandmean(QUALYPSO.time,xlab="Years")
# main GCM effects
plotQUALYPSOeffect(QUALYPSO.time,nameEff="GCM",xlab="Years")
# main RCM effects
plotQUALYPSOeffect(QUALYPSO.time,nameEff="RCM",xlab="Years")
# mean change and associated uncertainties
plotQUALYPSOMeanChangeAndUncertainties(QUALYPSO.time,xlab="Years")
# variance decomposition
plotQUALYPSOTotalVarianceDecomposition(QUALYPSO.time,xlab="Years")
#____________________________________________________________
# EXAMPLE OF QUALYPSO WHEN THE PREDICTOR IS THE GLOBAL TEMPERATURE
#____________________________________________________________
# list of options
listOption = list(typeChangeVariable='abs')
# call QUALYPSO
QUALYPSO.globaltas = QUALYPSO(Y=Y,scenAvail=scenAvail,X=X_globaltas,
                              Xfut=Xfut_globaltas,listOption=listOption)
# grand mean effect
plotQUALYPSOgrandmean(QUALYPSO.globaltas,xlab="Global warming (Celsius)")
# main GCM effects
plotQUALYPSOeffect(QUALYPSO.globaltas,nameEff="GCM",xlab="Global warming (Celsius)")
# main RCM effects
plotQUALYPSOeffect(QUALYPSO.globaltas,nameEff="RCM",xlab="Global warming (Celsius)")
# mean change and associated uncertainties
plotQUALYPSOMeanChangeAndUncertainties(QUALYPSO.globaltas,xlab="Global warming (Celsius)")
# variance decomposition
plotQUALYPSOTotalVarianceDecomposition(QUALYPSO.globaltas,xlab="Global warming (Celsius)")
QUALYPSO.ANOVA
Description
Partition uncertainty in climate responses using an ANOVA inferred with a Bayesian approach.
Usage
QUALYPSO.ANOVA(phiStar, scenAvail, listOption = NULL, namesEff)
Arguments
| phiStar | matrix of climate change responses (absolute or relative changes):  | 
| scenAvail | data.frame  | 
| listOption | list of options (see  | 
| namesEff | names of the main effects | 
Value
list with the following fields:
-  GRANDMEAN: List of estimates for the grand mean: -  strong: MEAN: vector of length nof posterior means
-  strong: SD: vector of length nof posterior standard dev.
-  strong: CI: matrix nx 2 of credible intervals of probabilityprobCIgiven inlistOption.
-  strong: QUANT: matrix nxnQof quantiles related to the probabilitiesquantilePosteriorgiven inlistOption
 
-  
-  RESIDUALVAR: List of estimates for the variance of the residual errors: -  strong: MEAN: vector of length nof posterior means
-  strong: SD: vector of length nof posterior standard dev.
-  strong: CI: matrix nx 2 of credible intervals of probabilityprobCIgiven inlistOption.
-  strong: QUANT: matrix nxnQof quantiles related to the probabilitiesquantilePosteriorgiven inlistOption
 
-  
-  MAINEFFECT: List of estimates for the main effects. For each main effect (GCM, RCM,..), each element of the list contains a list with: -  strong: MEAN: matrix nxnTypeEffof posterior means
-  strong: SD: matrix nxnTypeEffof posterior standard dev.
-  strong: CI: array nx 2 xnTypeEffof credible intervals of probabilityprobCIgiven inlistOption.
-  strong: QUANT: array nxnQxnTypeEffof quantiles related to the probabilitiesquantilePosteriorgiven inlistOption
 
-  
-  CHANGEBYEFFECT: For each main effect, list of estimates for the mean change by main effect, i.e. mean change by scenario (RCP4.5). For each main effect (GCM, RCM,..), each element of the list contains a list with: -  strong: MEAN: matrix nxnTypeEffof posterior means
-  strong: SD: matrix nxnTypeEffof posterior standard dev.
-  strong: CI: array nx 2 xnTypeEffof credible intervals of probabilityprobCIgiven inlistOption.
-  strong: QUANT: array nxnQxnTypeEffof quantiles related to the probabilitiesquantilePosteriorgiven inlistOption
 
-  
-  EFFECTVAR: variability related to the main effects (i.e. variability between the different RCMs, GCMs,..). Matrix nxnTypeEff
-  CONTRIB_EACH_EFFECT: Contribution of each individual effect to its component (percentage), e.g. what is the contribution of GCM1 to the variability related to GCMs. For each main effect (GCM, RCM,..), each element of the list contains a matrix nxnTypeEff
-  listOption: list of options used to obtained these results (obtained from QUALYPSO.check.option)
-  listScenarioInput: list of scenario characteristics (obtained from QUALYPSO.process.scenario)
Author(s)
Guillaume Evin
References
Evin, G., B. Hingray, J. Blanchet, N. Eckert, S. Morin, and D. Verfaillie (2020) Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation. Journal of Climate. <doi:10.1175/JCLI-D-18-0606.1>.
QUALYPSO.ANOVA.i
Description
Partition sources of uncertainty in climate change responses for one lead time or one grid point.
Usage
QUALYPSO.ANOVA.i(phiStar.i, nMCMC, listScenarioInput)
Arguments
| phiStar.i | vector of  | 
| nMCMC | number of MCMC simulation required | 
| listScenarioInput | list containing specifications, provided by  | 
Value
list with the following fields:
-  mu: vector of length nMCMC, mean climate change response
-  sigma2: vector of length nMCMC, variance of the residual terms
-  effect: list with nTypeEffelements, where each element corresponds to a different type of effect (e.g. alpha, beta, gamma in Eq. 7) Each element is a matrixnMCMCxnMaineff, andnMaineffis the number of main effects (e.g. number of GCMs, RCMs, etc.)
Author(s)
Guillaume Evin
References
Evin, G., B. Hingray, J. Blanchet, N. Eckert, S. Morin, and D. Verfaillie (2020) Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation. Journal of Climate. <doi:10.1175/JCLI-D-18-0606.1>.
QUALYPSO.check.option
Description
Check if input options provided in QUALYPSO are valid and assigned default values if missing.
Usage
QUALYPSO.check.option(listOption)
Arguments
| listOption | list of options | 
Value
List containing the complete set of options.
Author(s)
Guillaume Evin
QUALYPSO.process.scenario
Description
Process input scenarios.
Usage
QUALYPSO.process.scenario(scenAvail)
Arguments
| scenAvail | data.frame  | 
Value
list of preprocessed objects (listEff, scenAvail, scenComp, nEff, nTypeEff, nComp, isMissing, nMissing, iMatchScen,
indexEffInCompScen, Qmat)
Author(s)
Guillaume Evin
Annual warming levels simulated by different CMIP5 GCMs
Description
Annual warming levels at the planetary scales simulated by different CMIP5 GCMs for the period 1971-2099. Warming levels are obtained with respect to the year 1860 (common starting year of the CMIP5 simulations). These warming levels have been obtained with the following steps:
- Annual tas averages simulated by different CMIP5 have first been smoothed using a smoothing spline. Let us denote these smoothed values by tas_GCM(y) for a year y. 
- Large discrepancies can be observed for tas_GCM_smooth(y) even in the past due to large first-order biases in the GCM simulations. In order to obtain a common reference, we also consider observed tas estimates at the global scale. HadCRUT5 (Morice et al., 2021, 10.1029/2019JD032361) provides anomalies with respect to the period 1961-1990. An estimate of absolute average temperature for this period is 14°C (Jones et al., 1999, 10.1029/1999RG900002). Smoothed estimates of absolute tas averages are obtained using a smoothing spline and is denoted by tas_obs(y). 
- Warming levels are obtained as anomalies with respect to the period 1860 and considering a reference year, here 1990, where the warming levels WL are in agreement: WL(y) = tas_GCM(y)-tas_GCM(1990)+tas_obs(1990)-tas_obs(1860) 
Usage
data(X_globaltas)
Format
matrix 20 scenarios x 129 years
Author(s)
Guillaume Evin guillaume.evin@inrae.fr
Years 1971-2099 repeated for the 20 scenarios
Description
Years 1971-2099 repeated for the 20 scenarios
Usage
data(X_time_mat)
Format
matrix 20 scenarios x 129 years
Author(s)
Guillaume Evin guillaume.evin@inrae.fr
X_time_vec gives the years corr. to Y, i.e. from 1971 to 2099
Description
X_time_vec gives the years corr. to Y, i.e. from 1971 to 2099
Usage
data(X_time_vec)
Format
vector of length 129
Author(s)
Guillaume Evin guillaume.evin@inrae.fr
Vector of of future warming levels
Description
Equally spaced vector of of future warming levels
Usage
data(Xfut_globaltas)
Format
vector of length 13
Author(s)
Guillaume Evin guillaume.evin@inrae.fr
Xfut_time is a vector of 11 years equally spaced from 1999 to 2099
Description
Xfut_time is a vector of 11 years equally spaced from 1999 to 2099
Usage
data(Xfut_time)
Format
vectors of length 11
Author(s)
Guillaume Evin guillaume.evin@inrae.fr
Mean winter temperature over CEU with 20 GCM/RCM combinations for 1971-2099
Description
climate projections of mean winter (DJF) temperature over the SREX region CEU simulated by 20 combinations of CMIP5 GCMs and RCMs for the period 1971-2099
Usage
data(Y)
Format
matrix 20 scenarios x 129 years
Author(s)
Guillaume Evin guillaume.evin@inrae.fr
References
Seneviratne, S. I. et al. Changes in Climate Extremes and their Impacts on the Natural Physical Environment, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, edited by: Field, C., Barros, V., Stocker, T., and Dahe, Q., Cambridge University Press, Cambridge, 109-230, https://doi.org/10.1017/CBO9781139177245.006, 2012
fit.climate.response
Description
Fit trends for each simulation chain of an ensemble of nS projections. Each simulation chain is a time series
of nY time steps (e.g. number of years).
Usage
fit.climate.response(Y, args.smooth.spline, Xmat, Xfut, typeChangeVariable)
Arguments
| Y | matrix of simulation chains:  | 
| args.smooth.spline | list of arguments to be passed to  | 
| Xmat | matrix of predictors corresponding to the projections, e.g. time or global temperature. | 
| Xfut | values of the predictor over which the ANOVA will be applied. | 
| typeChangeVariable | type of change variable: "abs" (absolute, value by default) or "rel" (relative) | 
Details
See QUALYPSO for further information on arguments indexReferenceYear and typeChangeVariable.
Value
list with the following fields for each simulation chain:
-  YStar: nS x nY, change variable
-  phiStar: nS x nF, climate change responses
-  etaStar: nS x nY, deviation from the climate change response due to the internal variability, forXmat
-  phi: nS x nF, raw trends obtained using smooth.spline
-  climateResponse: output from smooth.spline 
-  varInterVariability: scalar, internal variability component of the MME 
Author(s)
Guillaume Evin
References
Evin, G., B. Hingray, J. Blanchet, N. Eckert, S. Morin, and D. Verfaillie (2020) Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation. Journal of Climate. J. Climate, 32, 2423–2440. <doi:10.1175/JCLI-D-18-0606.1>.
get.Qmat
Description
Provide matrix Q derived from a matrix Q* of Helmert contrasts:
Q = Q^* (Q^{*T} Q^*)^{-1/2}
See Eq. A6 in Evin et al., 2019.
Usage
get.Qmat(p)
Arguments
| p | integer | 
Value
| matrix | p x p matrix | 
Author(s)
Guillaume Evin
References
Evin, G., B. Hingray, J. Blanchet, N. Eckert, S. Morin, and D. Verfaillie (2020) Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation. Journal of Climate. J. Climate, 32, 2423–2440. <doi:10.1175/JCLI-D-18-0606.1>.
get.Qstar.mat
Description
Provide matrix containing Helmert contrasts (see Eq. A7 in Evin et al., 2019).
Usage
get.Qstar.mat(p)
Arguments
| p | integer | 
Value
| matrix | p x (p-1) matrix containing Helmert contrasts | 
Author(s)
Guillaume Evin
References
Evin, G., B. Hingray, J. Blanchet, N. Eckert, S. Morin, and D. Verfaillie (2020) <doi:10.1175/JCLI-D-18-0606.1>.
Evin, G., B. Hingray, J. Blanchet, N. Eckert, S. Morin, and D. Verfaillie (2020) Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation. Journal of Climate. J. Climate, 32, 2423–2440. <doi:10.1175/JCLI-D-18-0606.1>.
lm.ANOVA
Description
Partition uncertainty in climate responses using an ANOVA inferred with a Bayesian approach.
Usage
lm.ANOVA(phiStar, scenAvail, listOption = NULL, namesEff)
Arguments
| phiStar | matrix of climate change responses (absolute or relative changes):  | 
| scenAvail | data.frame  | 
| listOption | list of options (see  | 
| namesEff | names of the main effects | 
Value
list with the following fields:
-  GRANDMEAN: List of estimates for the grand mean: -  strong: MEAN: vector of length nof means
-  strong: SD: vector of length nof standard dev.
-  strong: CI: matrix nx 2 of credible intervals of probabilityprobCIgiven inlistOption.
 
-  
-  RESIDUALVAR: List of estimates for the variance of the residual errors: -  strong: MEAN: vector of length n
 
-  
-  MAINEFFECT: List of estimates for the main effects. For each main effect (GCM, RCM,..), each element of the list contains a list with: -  strong: MEAN: matrix nxnTypeEff
 
-  
-  CHANGEBYEFFECT: For each main effect, list of estimates for the mean change by main effect, i.e. mean change by scenario (RCP4.5). For each main effect (GCM, RCM,..), each element of the list contains a list with: -  strong: MEAN: matrix nxnTypeEff
 
-  
-  EFFECTVAR: variability related to the main effects (i.e. variability between the different RCMs, GCMs,..). Matrix nxnTypeEff
-  CONTRIB_EACH_EFFECT: Contribution of each individual effect to its component (percentage), e.g. what is the contribution of GCM1 to the variability related to GCMs. For each main effect (GCM, RCM,..), each element of the list contains a matrix nxnTypeEff
-  listOption: list of options used to obtained these results (obtained from QUALYPSO.check.option)
-  listScenarioInput: list of scenario characteristics (obtained from QUALYPSO.process.scenario)
Author(s)
Guillaume Evin
plotQUALYPSOMeanChangeAndUncertainties
Description
Plot fraction of total variance explained by each source of uncertainty.
Usage
plotQUALYPSOMeanChangeAndUncertainties(
  QUALYPSOOUT,
  col = NULL,
  ylim = NULL,
  xlab = "",
  ylab = "Change variable",
  addLegend = TRUE,
  ...
)
Arguments
| QUALYPSOOUT | output from  | 
| col | colors for each source of uncertainty, the first two colors corresponding to internal variability and residual variability, respectively | 
| ylim | y-axis limits | 
| xlab | x-axis label | 
| ylab | y-axis label | 
| addLegend | if TRUE, a legend is added | 
| ... | additional arguments to be passed to  | 
Author(s)
Guillaume Evin
plotQUALYPSOMeanChangeAndUncertaintiesBetatest
Description
Plot fraction of total variance explained by each source of uncertainty.
Usage
plotQUALYPSOMeanChangeAndUncertaintiesBetatest(
  QUALYPSOOUT,
  col = NULL,
  ylim = NULL,
  xlab = "",
  ylab = "Change variable",
  addLegend = TRUE,
  ...
)
Arguments
| QUALYPSOOUT | output from  | 
| col | colors for each source of uncertainty, the first two colors corresponding to internal variability and residual variability, respectively | 
| ylim | y-axis limits | 
| xlab | x-axis label | 
| ylab | y-axis label | 
| addLegend | if TRUE, a legend is added | 
| ... | additional arguments to be passed to  | 
Author(s)
Guillaume Evin
plotQUALYPSOTotalVarianceByScenario
Description
Plot fraction of total variance explained by each source of uncertainty.
Usage
plotQUALYPSOTotalVarianceByScenario(
  QUALYPSOOUT,
  nameEff,
  nameScenario,
  col = NULL,
  ylim = NULL,
  xlab = "",
  ylab = "Change variable",
  addLegend = TRUE,
  ...
)
Arguments
| QUALYPSOOUT | output from  | 
| nameEff | name of the main effect to be plotted in  | 
| nameScenario | name of the scenario to be plotted (as provided in  | 
| col | colors for each source of uncertainty, the first two colors corresponding to internal variability and residual variability, respectively | 
| ylim | y-axis limits | 
| xlab | x-axis label | 
| ylab | y-axis label | 
| addLegend | if TRUE, a legend is added | 
| ... | additional arguments to be passed to  | 
Author(s)
Guillaume Evin
plotQUALYPSOTotalVarianceDecomposition
Description
Plot fraction of total variance explained by each source of uncertainty.
Usage
plotQUALYPSOTotalVarianceDecomposition(
  QUALYPSOOUT,
  vecEff = NULL,
  col = c("orange", "yellow", "cadetblue1", "blue1", "darkgreen", "darkgoldenrod4",
    "darkorchid1"),
  xlab = "",
  ylab = "% Total Variance",
  addLegend = TRUE,
  ...
)
Arguments
| QUALYPSOOUT | output from  | 
| vecEff | vector of indices corresponding to the main effects (NULL by default), so that the order of appearance in the plot can be modified | 
| col | colors for each source of uncertainty, the first two colors corresponding to internal variability and residual variability, respectively | 
| xlab | x-axis label | 
| ylab | y-axis label | 
| addLegend | if TRUE, a legend is added | 
| ... | additional arguments to be passed to  | 
Author(s)
Guillaume Evin
plotQUALYPSOclimateChangeResponse
Description
Plot climate change responses.
Usage
plotQUALYPSOclimateChangeResponse(
  QUALYPSOOUT,
  lim = NULL,
  xlab = "",
  ylab = "Climate change response",
  ...
)
Arguments
| QUALYPSOOUT | output from  | 
| lim | y-axis limits (default is NULL) | 
| xlab | x-axis label | 
| ylab | y-axis label | 
| ... | additional arguments to be passed to  | 
Author(s)
Guillaume Evin
plotQUALYPSOclimateResponse
Description
Plot the climate responses.
Usage
plotQUALYPSOclimateResponse(
  QUALYPSOOUT,
  lim = NULL,
  xlab = "X",
  ylab = "Y",
  ...
)
Arguments
| QUALYPSOOUT | output from  | 
| lim | y-axis limits (default is NULL) | 
| xlab | x-axis label | 
| ylab | y-axis label | 
| ... | additional arguments to be passed to  | 
Author(s)
Guillaume Evin
plotQUALYPSOeffect
Description
Plot prediction of ANOVA effects for one main effect. By default, we plot we plot the credible intervals corresponding to a probability 0.95.
Usage
plotQUALYPSOeffect(
  QUALYPSOOUT,
  nameEff,
  includeMean = FALSE,
  lim = NULL,
  col = 1:20,
  xlab = "",
  ylab = "Effect",
  addLegend = TRUE,
  ...
)
Arguments
| QUALYPSOOUT | output from  | 
| nameEff | name of the main effect to be plotted in  | 
| includeMean | if TRUE, the grand mean is added to the main effect in the plot | 
| lim | y-axis limits (default is NULL) | 
| col | colors for each effect | 
| xlab | x-axis label | 
| ylab | y-axis label | 
| addLegend | if TRUE, a legend is added | 
| ... | additional arguments to be passed to  | 
Author(s)
Guillaume Evin
plotQUALYPSOgrandmean
Description
Plot prediction of grand mean ensemble.
Usage
plotQUALYPSOgrandmean(
  QUALYPSOOUT,
  lim = NULL,
  col = "black",
  xlab = "",
  ylab = "Grand mean",
  addLegend = T,
  ...
)
Arguments
| QUALYPSOOUT | output from  | 
| lim | y-axis limits (default is NULL) | 
| col | color for the overall mean and the credible interval | 
| xlab | x-axis label | 
| ylab | y-axis label | 
| addLegend | if TRUE, a legend is added | 
| ... | additional arguments to be passed to  | 
Author(s)
Guillaume Evin
List of GCM and RCM which have been used for the 20 climate projections
Description
scenAvail gives the GCM and RCM which have been used for the 20 climate projections (obtained with the RCP8.5)
Usage
data(scenAvail)
Format
data.frame with 20 rows and two columns: GCM and RCM
Author(s)
Guillaume Evin guillaume.evin@inrae.fr