| Type: | Package | 
| Title: | Survey Defense Tool | 
| Version: | 0.2.0 | 
| Description: | This tool is designed to analyze up to 5 Fraud Detection Questions integrated into a survey, focusing on potential fraudulent participants to clean the survey dataset from potential fraud. Fraud Detection Questions and further information available at https://surveydefense.org. | 
| License: | GPL-3 | 
| Encoding: | UTF-8 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | dplyr, flextable, utils | 
| Suggests: | officer | 
| RoxygenNote: | 7.3.2 | 
| NeedsCompilation: | no | 
| Packaged: | 2024-09-11 08:18:24 UTC; brueggemann | 
| Author: | Philipp Brüggemann [aut, cre] | 
| Maintainer: | Philipp Brüggemann <philippbrueggemann@web.de> | 
| Repository: | CRAN | 
| Date/Publication: | 2024-09-11 08:40:01 UTC | 
Fraud Detection Analysis Tool 1
Description
This function analyzes survey data based on up to 5 Fraud Detection Questions and generates results in Word and HTML formats.
Usage
FraudDetec1(
  output_dir,
  data,
  FraudList,
  correct_answers = c(0, 0, 0, 0, 0),
  ...
)
Arguments
| output_dir | Path specifying where the Word and HTML files will be saved. | 
| data | The data frame containing all the survey data. | 
| FraudList | A character vector of up to 5 Fraud Detection Questions. | 
| correct_answers | A numeric vector representing correct answers for each question. Default is  | 
| ... | Survey questions to be analyzed. | 
Value
A flextable object with the fraud detection analysis results. The results include summary statistics and metrics comparing responses from reliable and fraudulent participants.
Examples
if (requireNamespace("flextable", quietly = TRUE) && requireNamespace("officer", quietly = TRUE)) {
  library(flextable)
  library(officer)
  # Example data for fraud detection analysis
  Q1 <- c(4, 5, 3, 2, 5, 2)
  Q2 <- c(3, 4, 2, 5, 4, 3)
  Q3 <- c(5, 4, 3, 5, 4, 5)
  Q4 <- c(1, 2, 3, 4, 5, 2)
  Q5 <- c(5, 2, 2, 1, 4, 1)
  Q6 <- c(5, 2, 3, 5, 1, 2)
  Q7 <- c(5, 2, 4, 5, 3, 4)
  Fraud1 <- c(0, 1, 0, 0, 0, 0)
  Fraud2 <- c(0, 0, 0, 0, 0, 0)
  Fraud3 <- c(0, 1, 0, 0, 0, 0)
  Fraud4 <- c(0, 0, 1, 0, 0, 1)
  Fraud5 <- c(0, 0, 0, 1, 1, 1)
  Test_Data_Fraud <- data.frame(Q1, Q2, Q3, Q4, Q5, Q6, Q7, Fraud1, Fraud2, Fraud3, Fraud4, Fraud5)
  temp_dir <- tempdir()
  FraudDetec1(
    output_dir = temp_dir,
    data = Test_Data_Fraud,
    FraudList = c("Fraud1", "Fraud2", "Fraud3", "Fraud4", "Fraud5"),
    correct_answers = c(0, 0, 0, 0, 0),
    Q1, Q2, Q3, Q4, Q5, Q6, Q7
  )
}
Fraud Detection Analysis Tool 2
Description
This function analyzes survey data using up to 5 Fraud Detection Questions and generates a report in Word and HTML formats.
Usage
FraudDetec2(
  output_dir,
  data,
  FraudList,
  correct_answers = c(0, 0, 0, 0, 0),
  ...
)
Arguments
| output_dir | Path specifying where the Word and HTML files will be saved. | 
| data | The data frame containing all the survey data. | 
| FraudList | A character vector of up to 5 Fraud Detection Questions. | 
| correct_answers | A numeric vector representing correct answers for each question. Default is  | 
| ... | Survey questions to be analyzed. | 
Value
A flextable object with the fraud detection analysis results, including summary statistics for the overall sample and identified fraudulent responses.
Examples
if (requireNamespace("flextable", quietly = TRUE) && requireNamespace("officer", quietly = TRUE)) {
  library(flextable)
  library(officer)
  # Example data for fraud detection analysis
  Q1 <- c(4, 5, 3, 2, 5, 2)
  Q2 <- c(3, 4, 2, 5, 4, 3)
  Q3 <- c(5, 4, 3, 5, 4, 5)
  Q4 <- c(1, 2, 3, 4, 5, 2)
  Q5 <- c(5, 2, 2, 1, 4, 1)
  Q6 <- c(5, 2, 3, 5, 1, 2)
  Q7 <- c(5, 2, 4, 5, 3, 4)
  Fraud1 <- c(0, 1, 0, 0, 0, 0)
  Fraud2 <- c(0, 0, 0, 0, 0, 0)
  Fraud3 <- c(0, 1, 0, 0, 0, 0)
  Fraud4 <- c(0, 0, 1, 0, 0, 1)
  Fraud5 <- c(0, 0, 0, 1, 1, 1)
  Test_Data_Fraud <- data.frame(Q1, Q2, Q3, Q4, Q5, Q6, Q7, Fraud1, Fraud2, Fraud3, Fraud4, Fraud5)
  temp_dir <- tempdir()
  FraudDetec2(
    output_dir = temp_dir,
    data = Test_Data_Fraud,
    FraudList = c("Fraud1", "Fraud2", "Fraud3", "Fraud4", "Fraud5"),
    correct_answers = c(0, 0, 0, 0, 0),
    Q1, Q2, Q3, Q4, Q5, Q6, Q7
  )
}
Fraud Detection Analysis Tool 3
Description
Fraud Detection Analysis Tool 3
Usage
FraudDetec3(
  output_dir,
  data,
  FraudList,
  correct_answers = c(0, 0, 0, 0, 0),
  ...
)
Arguments
| output_dir | Path specifying where the Word and HTML files will be saved. | 
| data | The data frame containing all the survey data. | 
| FraudList | A character vector of up to 5 Fraud Detection Questions. | 
| correct_answers | A numeric vector representing correct answers for each question. Default is  | 
| ... | Survey questions to be analyzed. | 
Value
A flextable object with the results.
Examples
if (requireNamespace("flextable", quietly = TRUE) && requireNamespace("officer", quietly = TRUE)) {
  library(flextable)
  library(officer)
  # Example data for fraud detection analysis
  Q1 <- c(4, 5, 3, 2, 5, 2)
  Q2 <- c(3, 4, 2, 5, 4, 3)
  Q3 <- c(5, 4, 3, 5, 4, 5)
  Q4 <- c(1, 2, 3, 4, 5, 2)
  Q5 <- c(5, 2, 2, 1, 4, 1)
  Q6 <- c(5, 2, 3, 5, 1, 2)
  Q7 <- c(5, 2, 4, 5, 3, 4)
  Fraud1 <- c(0, 1, 0, 0, 0, 0)
  Fraud2 <- c(0, 0, 0, 0, 0, 0)
  Fraud3 <- c(0, 1, 0, 0, 0, 0)
  Fraud4 <- c(0, 0, 1, 0, 0, 1)
  Fraud5 <- c(0, 0, 0, 1, 1, 1)
  Test_Data_Fraud <- data.frame(Q1, Q2, Q3, Q4, Q5, Q6, Q7, Fraud1, Fraud2, Fraud3, Fraud4, Fraud5)
  temp_dir <- tempdir()
  FraudDetec3(
    output_dir = temp_dir,
    data = Test_Data_Fraud,
    FraudList = c("Fraud1", "Fraud2", "Fraud3", "Fraud4", "Fraud5"),
    correct_answers = c(0, 0, 0, 0, 0),
    Q1, Q2, Q3, Q4, Q5, Q6, Q7
  )
}
Fraud Detection Analysis Tool 4
Description
Fraud Detection Analysis Tool 4
Usage
FraudDetec4(
  output_dir,
  data,
  FraudList,
  correct_answers = c(0, 0, 0, 0, 0),
  ...
)
Arguments
| output_dir | Path specifying where the Word and HTML files will be saved. | 
| data | The data frame containing all the survey data. | 
| FraudList | A character vector of up to 5 Fraud Detection Questions. | 
| correct_answers | A numeric vector representing correct answers for each question. Default is  | 
| ... | Survey questions to be analyzed. | 
Value
A flextable object with the results.
Examples
if (requireNamespace("flextable", quietly = TRUE) && requireNamespace("officer", quietly = TRUE)) {
  library(flextable)
  library(officer)
  # Example data for fraud detection analysis
  Q1 <- c(4, 5, 3, 2, 5, 2)
  Q2 <- c(3, 4, 2, 5, 4, 3)
  Q3 <- c(5, 4, 3, 5, 4, 5)
  Q4 <- c(1, 2, 3, 4, 5, 2)
  Q5 <- c(5, 2, 2, 1, 4, 1)
  Q6 <- c(5, 2, 3, 5, 1, 2)
  Q7 <- c(5, 2, 4, 5, 3, 4)
  Fraud1 <- c(0, 1, 0, 0, 0, 0)
  Fraud2 <- c(0, 0, 0, 0, 0, 0)
  Fraud3 <- c(0, 1, 0, 0, 0, 0)
  Fraud4 <- c(0, 0, 1, 0, 0, 1)
  Fraud5 <- c(0, 0, 0, 1, 1, 1)
  Test_Data_Fraud <- data.frame(Q1, Q2, Q3, Q4, Q5, Q6, Q7, Fraud1, Fraud2, Fraud3, Fraud4, Fraud5)
  temp_dir <- tempdir()
  FraudDetec4(
    output_dir = temp_dir,
    data = Test_Data_Fraud,
    FraudList = c("Fraud1", "Fraud2", "Fraud3", "Fraud4", "Fraud5"),
    correct_answers = c(0, 0, 0, 0, 0),
    Q1, Q2, Q3, Q4, Q5, Q6, Q7
  )
}
Fraud Detection Analysis Tool 5
Description
Fraud Detection Analysis Tool 5
Usage
FraudDetec5(
  output_dir,
  data,
  FraudList,
  correct_answers = c(0, 0, 0, 0, 0),
  ...
)
Arguments
| output_dir | Path specifying where the Word and HTML files will be saved. | 
| data | The data frame containing all the survey data. | 
| FraudList | A character vector of up to 5 Fraud Detection Questions. | 
| correct_answers | A numeric vector representing correct answers for each question. Default is  | 
| ... | Survey questions to be analyzed. | 
Value
A flextable object with the results.
Examples
if (requireNamespace("flextable", quietly = TRUE) && requireNamespace("officer", quietly = TRUE)) {
  library(flextable)
  library(officer)
  # Example data for fraud detection analysis
  Q1 <- c(4, 5, 3, 2, 5, 2)
  Q2 <- c(3, 4, 2, 5, 4, 3)
  Q3 <- c(5, 4, 3, 5, 4, 5)
  Q4 <- c(1, 2, 3, 4, 5, 2)
  Q5 <- c(5, 2, 2, 1, 4, 1)
  Q6 <- c(5, 2, 3, 5, 1, 2)
  Q7 <- c(5, 2, 4, 5, 3, 4)
  Fraud1 <- c(0, 1, 0, 0, 0, 0)
  Fraud2 <- c(0, 0, 0, 0, 0, 0)
  Fraud3 <- c(0, 1, 0, 0, 0, 0)
  Fraud4 <- c(0, 0, 1, 0, 0, 1)
  Fraud5 <- c(0, 0, 0, 1, 1, 1)
  Test_Data_Fraud <- data.frame(Q1, Q2, Q3, Q4, Q5, Q6, Q7, Fraud1, Fraud2, Fraud3, Fraud4, Fraud5)
  temp_dir <- tempdir()
  FraudDetec5(
    output_dir = temp_dir,
    data = Test_Data_Fraud,
    FraudList = c("Fraud1", "Fraud2", "Fraud3", "Fraud4", "Fraud5"),
    correct_answers = c(0, 0, 0, 0, 0),
    Q1, Q2, Q3, Q4, Q5, Q6, Q7
  )
}