Type: | Package |
Title: | Symmetric Tempered Stable Distributions |
Version: | 1.0-2 |
Date: | 2023-01-14 |
Author: | Michael Grabchak <mgrabcha@uncc.edu> and Lijuan Cao <lcao2@uncc.edu> |
Maintainer: | Michael Grabchak <mgrabcha@uncc.edu> |
Description: | Contains methods for simulation and for evaluating the pdf, cdf, and quantile functions for symmetric stable, symmetric classical tempered stable, and symmetric power tempered stable distributions. |
License: | GPL (≥ 3) |
NeedsCompilation: | yes |
Packaged: | 2023-01-15 00:42:22 UTC; lcao2 |
Repository: | CRAN |
Date/Publication: | 2023-01-15 01:00:02 UTC |
Symmetric Tempered Stable Distributions
Description
Contains methods for simulation and for evaluating the pdf, cdf, and quantile functions for symmetric stable, symmetric classical tempered stable, and symmetric power tempered stable distributions.
Details
The DESCRIPTION file:
Package: | SymTS |
Type: | Package |
Title: | Symmetric Tempered Stable Distributions |
Version: | 1.0-2 |
Date: | 2023-01-14 |
Author: | Michael Grabchak <mgrabcha@uncc.edu> and Lijuan Cao <lcao2@uncc.edu> |
Maintainer: | Michael Grabchak <mgrabcha@uncc.edu> |
Description: | Contains methods for simulation and for evaluating the pdf, cdf, and quantile functions for symmetric stable, symmetric classical tempered stable, and symmetric power tempered stable distributions. |
License: | GPL (>= 3) |
Index of help topics:
SymTS-package Symmetric Tempered Stable Distributions dCTS PDF of CTS Distribution dPowTS PDF of PowTS Distribution dSaS PDF of Symmetric Stable Distribution pCTS CDF of CTS Distribution pPowTS PDF of PowTS Distribution pSaS CDF of Symmetric Stable Distribution qCTS Quantile Function of CTS Distribution qPowTS Quantile Function of PowTS Distribution qSaS Quantile Function of Symmetric Stable Distribution rCTS Simulation from CTS Distribution rPowTS Simulation from PowTS Distribution rSaS Simulation from Symmetric Stable Distribution
Author(s)
Michael Grabchak <mgrabcha@uncc.edu> and Lijuan Cao <lcao2@uncc.edu>
Maintainer: Michael Grabchak <mgrabcha@uncc.edu>
References
M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.
S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011). Financial Models with Levy Processes and Volatility Clustering. Wiley, Chichester.
J. Rosinski (2007). Tempering stable processes. Stochastic Processes and Their Applications, 117(6):677-707.
G. Samorodnitsky and M. Taqqu (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton.
PDF of CTS Distribution
Description
Evaluates the pdf for the symmetric classical tempered stable distribution. When alpha=0 this is the symmetric variance gamma distribution.
Usage
dCTS(x, alpha, c = 1, ell = 1, mu = 0)
Arguments
x |
Vector of points. |
alpha |
Number in [0,2) |
c |
Parameter c >0 |
ell |
Parameter ell>0 |
mu |
Location parameter, any real number |
Details
The integration is preformed using the QAWF method in the GSL library for C. For this distribution the Rosinski measure R(dx) = c*delta_ell(dx) + c*delta_(-ell)(dx), where delta is the delta function. The Levy measure is M(dx) = c*ell^(alpha) *e^(-x/ell)*x^(-1-alpha) dx. The characteristic function is, for alpha not equal 0,1:
f(t) = exp( 2*c*gamma(-alpha)*(1+ell^2 t^2)^(alpha/2)*(cos(alpha*atan(ell*t))-1)) *e^(i*t*mu),
for alpha = 1 it is
f(t) = (1+ell^2 t^2)^c*exp(-2*c*ell*t*atan(ell*t)) *e^(i*t*mu),
and for alpha=0 it is
f(t) = (1+t^2 ell^2)^(-c) *e^(i*t*mu).
Note
When alpha=0 and c<=.5, the pdf is unbounded. It is infinite at mu and the method returns Inf in that case. This does not affect pCTS, qCTS, or rCTS.
Author(s)
Michael Grabchak and Lijuan Cao
References
M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.
Examples
x = (-10:10)/10
dCTS(x,.5)
PDF of PowTS Distribution
Description
Evaluates the pdf for the symmetric power tempered stable distribution.
Usage
dPowTS(x, alpha, c = 1, ell = 1, mu = 0)
Arguments
x |
Vector of points |
alpha |
Number in [0,2) |
c |
Parameter c >0 |
ell |
Parameter ell>0 |
mu |
Location parameter, any real number |
Details
The integration is preformed using the QAWF method in the GSL library for C. For this distribution the Rosinski measure R(dx) = c*(alpha+ell+1)*(alpha+ell)*(1+|x|)^(-2-alpha-ell)(dx).
Note
We do not allow for the case alpha=0 and c<=.5*(1+ell), as, in this case, the pdf is unbounded. This does not affect pPowTS, qPowTS, or rPowTS.
Author(s)
Michael Grabchak and Lijuan Cao
References
M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.
Examples
x = (-10:10)/10
dPowTS(x,.5)
PDF of Symmetric Stable Distribution
Description
Evaluates the pdf for the symmetric alpha stable distribution. For alpha=1 this is the Cauchy distribution.
Usage
dSaS(x, alpha, c = 1, mu = 0)
Arguments
x |
Vector of points. |
alpha |
Index of stability; Number in (0,2) |
c |
Scale parameter, c>0 |
mu |
Location parameter, any real number |
Details
The integration is preformed using the QAWF method in the GSL library for C. The characteristic function is
f(t) = e^(-c |t|^alpha) *e^(i*t*mu).
Author(s)
Michael Grabchak and Lijuan Cao
References
G. Samorodnitsky and M. Taqqu (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton.
Examples
x = (-10:10)/10
dSaS(x,.5)
CDF of CTS Distribution
Description
Evaluates the cdf for the symmetric classical tempered stable distribution. When alpha=0 this is the symmetric variance gamma distribution.
Usage
pCTS(x, alpha, c = 1, ell = 1, mu = 0)
Arguments
x |
Vector of probabilities. |
alpha |
Number in [0,2) |
c |
Parameter c >0 |
ell |
Parameter ell>0 |
mu |
Location parameter, any real number |
Details
For details about this distribution see the the describtion of dCTS.
Author(s)
Michael Grabchak and Lijuan Cao
References
M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.
Examples
x = (-10:10)/10
pCTS(x,.5)
PDF of PowTS Distribution
Description
Evaluates the cdf for the symmetric power tempered stable distribution.
Usage
pPowTS(x, alpha, c = 1, ell = 1, mu = 0)
Arguments
x |
Vector of probabilities. |
alpha |
Number in [0,2) |
c |
Parameter c >0 |
ell |
Parameter ell>0 |
mu |
Location parameter, any real number |
Details
The integration is preformed using the QAWF method in the GSL library for C. For this distribution the Rosinski measure R(dx) = c*(alpha+ell+1)*(alpha+ell)*(1+|x|)^(-2-alpha-ell)(dx).
Author(s)
Michael Grabchak and Lijuan Cao
References
M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.
Examples
x = (-10:10)/10
pPowTS(x,.5)
CDF of Symmetric Stable Distribution
Description
Evaluates the cdf for the symmetric alpha stable distribution. For alpha=1 this is the Cauchy distribution.
Usage
pSaS(x, alpha, c = 1, mu = 0)
Arguments
x |
Vector of probabilities. |
alpha |
Index of stability; Number in (0,2) |
c |
Scale parameter, c>0 |
mu |
Location parameter, any real number |
Details
The integration is preformed using the QAWF method in the GSL library for C. The characteristic function is
f(t) = e^(-c |t|^alpha) *e^(i*t*mu).
Author(s)
Michael Grabchak and Lijuan Cao
References
G. Samorodnitsky and M. Taqqu (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton.
Examples
x = (-10:10)/10
pSaS(x,.5)
Quantile Function of CTS Distribution
Description
Evaluates the quantile function for the symmetric classical tempered stable distribution. When alpha=0 this is the symmetric variance gamma distribution.
Usage
qCTS(x, alpha, c = 1, ell = 1, mu = 0)
Arguments
x |
Vector of quantiles. |
alpha |
Number in [0,2) |
c |
Parameter c >0 |
ell |
Parameter ell>0 |
mu |
Location parameter, any real number |
Details
For details about this distribution see the the describtion of dCTS.
Author(s)
Michael Grabchak and Lijuan Cao
References
M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.
Examples
x = (1:9)/10
qCTS(x,.5)
Quantile Function of PowTS Distribution
Description
Evaluates the quantile function for the symmetric power tempered stable distribution.
Usage
qPowTS(x, alpha, c = 1, ell = 1, mu = 0)
Arguments
x |
Vector of quantiles. |
alpha |
Number in [0,2) |
c |
Parameter c >0 |
ell |
Parameter ell>0 |
mu |
Location parameter, any real number |
Author(s)
Michael Grabchak and Lijuan Cao
References
M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.
Examples
x = (1:9)/10
qPowTS(x,.5)
Quantile Function of Symmetric Stable Distribution
Description
Evaluates the quantile function for the symmetric alpha stable distribution. For alpha=1 this is the Cauchy distribution.
Usage
qSaS(x, alpha, c = 1, mu = 0)
Arguments
x |
Vector of points. |
alpha |
Index of stability; Number in (0,2) |
c |
Scale parameter, c>0 |
mu |
Location parameter, any real number |
Details
The characteristic function is
f(t) = e^(-c |t|^alpha) *e^(i*t*mu).
Author(s)
Michael Grabchak and Lijuan Cao
References
G. Samorodnitsky and M. Taqqu (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton.
Examples
x = (1:9)/10
qSaS(x,.5)
Simulation from CTS Distribution
Description
Simulates from the symmetric classical tempered stable distribution. When alpha=0 this is the symmetric variance gamma distribution. The simulation is performed by numerically evaluating the quantile function.
Usage
rCTS(r, alpha, c = 1, ell = 1, mu = 0)
Arguments
r |
Number of observations. |
alpha |
Number in [0,2) |
c |
Parameter c >0 |
ell |
Parameter ell>0 |
mu |
Location parameter, any real number |
Details
For details about this distribution see the the describtion of dCTS.
Author(s)
Michael Grabchak and Lijuan Cao
References
M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.
Examples
rCTS(10,.5)
Simulation from PowTS Distribution
Description
Simulates from the symmetric power tempered stable distribution. The simulation is performed by numerically evaluating the quantile function.
Usage
rPowTS(r, alpha, c = 1, ell = 1, mu = 0)
Arguments
r |
Number of observations. |
alpha |
Number in [0,2) |
c |
Parameter c >0 |
ell |
Parameter ell>0 |
mu |
Location parameter, any real number |
Details
For this distribution the Rosinski measure R(dx) = c*(alpha+ell+1)*(alpha+ell)*(1+|x|)^(-2-alpha-ell)(dx).
Author(s)
Michael Grabchak and Lijuan Cao
References
M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.
Examples
pPowTS(10,.5)
Simulation from Symmetric Stable Distribution
Description
Simulates from the symmetric alpha stable distribution. When alpha=1 this is the Cauchy distribution. The simulation is performed using a well-known approah. See for instance Proposition 1.7.1 in Samorodnitsky and Taqqu (1994).
Usage
rSaS(r, alpha, c = 1, mu = 0)
Arguments
r |
Number of observations. |
alpha |
Index of stability; Number in (0,2) |
c |
Scale parameter, c>0 |
mu |
Location parameter, any real number |
Details
The characteristic function is
f(t) = e^(-c |t|^alpha)*e^(i*t*mu).
Author(s)
Michael Grabchak and Lijuan Cao
References
G. Samorodnitsky and M. Taqqu (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton.
Examples
rSaS(10,.5)