## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # # example.data # # library(TransTGGM) # library(Tlasso) # data(example.data) # t.data = example.data$t.data # A.data = example.data$A.data # t.Omega.true.list = example.data$t.Omega.true.list # normalize = T # # K = length(A.data) # p.vec = dim(t.data) # M = length(p.vec) - 1 # n = p.vec[M+1] # p.vec = p.vec[1:M] # tla.lambda = 20*sqrt( p.vec*log(p.vec) / ( n * prod(p.vec) )) # A.lambda = list() # for (k in 1:K) { # A.lambda[[k]] = 20*sqrt( log(p.vec) / ( dim(A.data[[k]])[M+1] * prod(p.vec) )) # } # # # the proposed method # res.final = tensor.GGM.trans(t.data, A.data, A.lambda, normalize = normalize) # # Tlasso # Tlasso.Omega.list = Tlasso.fit(t.data, lambda.vec = tla.lambda, norm.type = 1+as.numeric(normalize)) # # # summary # i.Omega = as.data.frame(t(unlist(est.analysis(res.final$Omega.list, t.Omega.true.list)))) # i.Omega.diff = as.data.frame(t(unlist(est.analysis(res.final$Omega.list.diff, t.Omega.true.list)))) # i.Tlasso = as.data.frame(t(unlist(est.analysis(Tlasso.Omega.list, t.Omega.true.list)))) # i.Omega.diff # proposed.v # i.Omega # proposed # i.Tlasso # Tlasso #