| Title: | Adaptive Bayesian Graphical Lasso | 
| Version: | 0.1.1 | 
| Description: | Implements a Bayesian adaptive graphical lasso data-augmented block Gibbs sampler. The sampler simulates the posterior distribution of precision matrices of a Gaussian Graphical Model. This sampler was adapted from the original MATLAB routine proposed in Wang (2012) <doi:10.1214/12-BA729>. | 
| License: | GPL-3 | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.1.1.9000 | 
| Imports: | MASS, pracma, stats, statmod | 
| Suggests: | testthat | 
| NeedsCompilation: | no | 
| Packaged: | 2021-07-13 08:43:20 UTC; QXZ0GWG | 
| Author: | Jarod Smith | 
| Maintainer: | Jarod Smith <jarodsmith706@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2021-07-13 22:10:05 UTC | 
Adaptive Bayesian graphical lasso MCMC sampler
Description
A Bayesian adaptive graphical lasso data-augmented block Gibbs sampler. The sampler is adapted from the MATLAB routines used in Wang (2012).
Usage
BayesGlassoBlock(X, burnin = 1000, nmc = 2000)
Arguments
| X | Numeric matrix. | 
| burnin | An integer specifying the number of burn-in iterations. | 
| nmc | An integer specifying the number of MCMC samples. | 
Value
list containing:
- Sig
- A - pby- pby- nmcarray of saved posterior samples of covariance matrices.
- Omega
- A - pby- pby nmc array of saved posterior samples of precision matrices.
- Lambda
- A 1 by - nmcvector of saved posterior samples of lambda values.
References
Wang, H. (2012). Bayesian graphical lasso models and efficient posterior computation. Bayesian Analysis, 7(4). doi: 10.1214/12-BA729.
Examples
# Generate true covariance matrix:
p             <- 10
n             <- 50
SigTrue       <- pracma::Toeplitz(c(0.7^rep(1:p-1)))
CTrue         <- pracma::inv(SigTrue)
# Generate expected value vector:
mu            <- rep(0,p)
# Generate multivariate normal distribution:
set.seed(123)
X             <- MASS::mvrnorm(n,mu=mu,Sigma=SigTrue)
abglasso_post <- BayesGlassoBlock(X,burnin = 1000,nmc = 2000)