In this vignette, we show how to use bayeslm to sample coefficients for a Gaussian linear regression with a number of different prior distributions.
library(bayeslm)set.seed(200)
p = 20
n = 100
kappa = 1.25
beta_true = c(c(1,2,3),rnorm(p-3,0,0.01))
sig_true = kappa*sqrt(sum(beta_true^2))
x = matrix(rnorm(p*n),n,p)
y = x %*% beta_true + sig_true * rnorm(n)
x = as.matrix(x)
y = as.matrix(y)
data = data.frame(x = x, y = y)First, we run OLS and inspect the estimated coefficients
fitOLS = lm(y~x-1)
coef(fitOLS)
#>          x1          x2          x3          x4          x5          x6 
#>  1.14415549  1.99442217  2.38953931 -0.73055959 -0.71840494  0.25239729 
#>          x7          x8          x9         x10         x11         x12 
#>  0.39044226  0.41366834 -0.39830816  0.04170669 -0.20976664 -0.24878570 
#>         x13         x14         x15         x16         x17         x18 
#>  0.63260575  0.07410838  0.40714461 -0.18807163  0.79535530  0.32748131 
#>         x19         x20 
#>  0.59214904  0.51461938bayeslmThe bayeslm sampler can group coefficients into blocks and sample several coefficients at once. Below, we simply place every coefficient into its own block.
block_vec = rep(1, p)Now, we run bayeslm on six different priors and store their estimated coefficients
# Horseshoe prior
fit1 = bayeslm(y, x, prior = 'horseshoe', icept = FALSE, 
               block_vec = block_vec, N = 10000, burnin=2000)
beta_est1 = colMeans(fit1$beta)
# Laplace prior
fit2 = bayeslm(y, x, prior = 'laplace', icept = FALSE, 
               block_vec = block_vec, N = 10000, burnin=2000)
beta_est2 = colMeans(fit2$beta)
# Ridge prior
fit3 = bayeslm(y, x, prior = 'ridge', icept = FALSE, 
               block_vec = block_vec, N = 10000, burnin=2000)
beta_est3 = colMeans(fit3$beta)
# "Sharkfin" prior
fit4 = bayeslm(y, x, prior = 'sharkfin', icept = FALSE, 
               block_vec = block_vec, N = 10000, burnin=2000)
beta_est4 = colMeans(fit4$beta)
# "Non-local" prior
fit5 = bayeslm(y, x, prior = 'nonlocal', icept = FALSE, 
               block_vec = block_vec, N = 10000, burnin=2000)
beta_est5 = colMeans(fit5$beta)
# Inverse laplace prior
fit6 = bayeslm(y, x, prior = 'inverselaplace', lambda = 0.01, icept = FALSE, 
               block_vec = block_vec, N = 10000, burnin=2000)
beta_est6 = colMeans(fit6$beta)And we plot the posterior distribution of the regression coefficients, along with the OLS estimates, against the true simulated coefficients.
plot(NULL,xlim=range(beta_true),ylim=range(beta_true), 
     xlab = "beta true", ylab = "estimation", )
points(beta_true,beta_est1,pch=20)
points(beta_true,fitOLS$coef,col='red')
points(beta_true,beta_est2,pch=20,col='cyan')
points(beta_true,beta_est3,pch=20,col='orange')
points(beta_true,beta_est4,pch=20,col='pink')
points(beta_true,beta_est5,pch=20,col='lightgreen')
points(beta_true,beta_est6,pch=20,col='grey')
legend("topleft", c("OLS", "horseshoe", "laplace", "ridge", "sharkfin", 
  "nonlocal", "inverselaplace"), col = c("red", "black", "cyan", "orange", 
    "pink", "lightgreen", "grey"), pch = rep(1, 7))
abline(0,1,col='red')We can also compare the root mean squared error (RMSE) for each prior
rmseOLS = sqrt(sum((fitOLS$coef-beta_true)^2))
rmse1 = sqrt(sum((beta_est1-beta_true)^2))
rmse2 = sqrt(sum((beta_est2-beta_true)^2))
rmse3 = sqrt(sum((beta_est3-beta_true)^2))
rmse4 = sqrt(sum((beta_est4-beta_true)^2))
rmse5 = sqrt(sum((beta_est5-beta_true)^2))
rmse6 = sqrt(sum((beta_est6-beta_true)^2))
print(cbind(ols = rmseOLS, hs = rmse1,laplace = rmse2, ridge = rmse3, 
            sharkfin = rmse4,nonlocal = rmse5, inverselaplace = rmse6))
#>           ols       hs  laplace    ridge sharkfin nonlocal inverselaplace
#> [1,] 2.013695 1.082114 1.463458 1.954048 1.990372 2.291407       1.058102Here, we demonstrate:
y ~ x) in the bayeslm library# Put the first two coefficients in one elliptical sampling block
block_vec2 = c(2, rep(1, p-2))
fitb = bayeslm(y ~ x - 1, data = data, prior = 'horseshoe', 
               block_vec = block_vec2, N = 10000, burnin = 2000)
#> horseshoe prior 
#> fixed running time 0.000402834
#> sampling time 0.223155
summary(fitb)
#> Average number of rejections before one acceptance : 
#> 31.2156 
#> Summary of beta draws 
#>    based on 8000 valid draws (number of burn in is 2000) 
#> Summary of Posterior draws 
#>  Moments 
#>        mean std dev eff sample size    
#> x1   0.6403    0.52             764    
#> x2   2.1377    0.68             618 ***
#> x3   2.6466    0.47            2362 ***
#> x4  -0.2519    0.39            1529    
#> x5  -0.2663    0.37            1662    
#> x6   0.0351    0.24            5648    
#> x7   0.1552    0.33            2617    
#> x8   0.1484    0.32            2675    
#> x9  -0.2187    0.36            1703    
#> x10  0.0558    0.25            4862    
#> x11 -0.0727    0.26            4570    
#> x12 -0.0597    0.26            4983    
#> x13  0.2759    0.37            1184    
#> x14  0.0089    0.29            7268    
#> x15  0.1151    0.28            2807    
#> x16 -0.0355    0.28            6747    
#> x17  0.3939    0.46            1102    
#> x18  0.0882    0.25            3785    
#> x19  0.2470    0.37            1680    
#> x20  0.1576    0.32            2567    
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
#> 
#> Summary of sigma draws 
#> Mean of standard deviation is  4.555075 
#> S.d. of standard deviation samples is  0.3624706 
#> Effective sample size of s.d. is  3357.107