Version: | 3.4 |
Date: | 2025-03-26 |
Title: | Simulation, Estimation and Forecasting of Beta-Skew-t-EGARCH Models |
Maintainer: | Genaro Sucarrat <genaro.sucarrat@bi.no> |
Depends: | R (≥ 3.4.0), zoo |
URL: | https://www.sucarrat.net/ |
Description: | Simulation, estimation and forecasting of first-order Beta-Skew-t-EGARCH models with leverage (one-component, two-component, skewed versions). |
License: | GPL-2 |
NeedsCompilation: | yes |
Packaged: | 2025-03-26 10:32:32 UTC; sucarrat |
Author: | Genaro Sucarrat [aut, cre] |
Repository: | CRAN |
Date/Publication: | 2025-03-26 11:40:03 UTC |
Simulation, estimation and forecasting of Beta-Skew-t-EGARCH models
Description
This package provides facilities for the simulation, estimation and forecasting of first order Beta-Skew-t-EGARCH models with leverage (one-component and two-component versions), see Harvey and Sucarrat (2014), and Sucarrat (2013).
Let y[t] denote a financial return at time t equal to
y[t] = sigma[t]*epsilon[t]
where sigma[t] > 0 is the scale or volatility (generally not equal to the conditional standard deviation), and where epsilon[t] is IID and t-distributed (possibly skewed) with df degrees of freedom. Then the first order log-volatility specifiction of the one-component Beta-Skew-t-EGARCH model can be parametrised as
sigma[t] = exp(lambda[t]),
lambda[t] = omega + lambdadagger,
lambdadagger[t] = phi1*lambdadagger[t-1] + kappa1*u[t-1] + kappastar*sign[-y]*(u[t-1]+1).
So the scale or volatility is given by sigma[t] = exp(lambda[t]). The omega is the unconditional or long-term log-volatility, phi1 is the GARCH parameter (|phi1| < 1 implies stability), kappa1 is the ARCH parameter, kappastar is the leverage or volatility-asymmetry parameter and u[t] is the conditional score or first derivative of the log-likelihood with respect to lambda. The score u[t] is zero-mean and IID, and (u[t]+1)/(df+1) is Beta distributed when there is no skew in the conditional density of epsilon[t]. The two-component specification is given by
sigma[t] = exp(lambda[t]),
lambda[t] = omega + lambda1dagger + lambda2dagger,
lambda1dagger[t] = phi1*lambdadagger[t-1] + kappa1*u[t-1],
lambda2dagger[t] = phi2*lambdadagger[t-1] + kappa2*u[t-1] + kappastar*sign[-y]*(u[t-1]+1).
The first component, lambda1dagger, is interpreted as the long-term component, whereas the second component, lambda2dagger, is interpreted as the short-term component.
Details
Package: | betategarch |
Type: | Package |
Version: | 3.4 |
Date: | 2025-03-26 |
License: | GPL-2 |
LazyLoad: | yes |
The two main functions of the package are tegarchSim
and tegarch
. The first simulates a Beta-Skew-t-EGARCH models whereas the second estimates one. The second object returns an object (a list) of class 'tegarch', and a collection of methods can be applied to this class: coef.tegarch
, fitted.tegarch
, logLik.tegarch
, predict.tegarch
, print.tegarch
, residuals.tegarch
, summary.tegarch
and vcov.tegarch
. In addition, the output produced by the tegarchSim
function and the fitted.tegarch
and residuals.tegarch
methods are of the Z's ordered observations (zoo
) class, which means a range of time-series methods are available for these objects.
Author(s)
Genaro Sucarrat, https://www.sucarrat.net/
References
C. Fernandez and M. Steel (1998), 'On Bayesian Modeling of Fat Tails and Skewness', Journal of the American Statistical Association 93, pp. 359-371, doi:10.1080/01621459.1998.10474117
A. Harvey and G. Sucarrat (2014), 'EGARCH models with fat tails, skewness and leverage'. Computational Statistics and Data Analysis 76, pp. 320-338, doi:10.1016/j.csda.2013.09.022
G. Sucarrat (2013), 'betategarch: Simulation, Estimation and Forecasting of First-Order Beta-Skew-t-EGARCH models'. The R Journal (Volume 5/2), pp. 137-147, ,doi:10.32614/RJ-2013-034
Examples
##simulate 1000 observations from model with default parameter values:
set.seed(123)
y <- tegarchSim(1000)
##estimate and store as 'mymod':
mymod <- tegarch(y)
##print estimates and standard errors:
print(mymod)
##graph of fitted volatility (conditional standard deviation):
plot(fitted(mymod))
##plot forecasts of volatility 1-step ahead up to 10-steps ahead:
plot(predict(mymod, n.ahead=10))
Extraction methods for 'tegarch' objects
Description
Extraction methods for objects of class 'tegarch' (i.e. the result of estimating a Beta-Skew-t-EGARCH model)
Usage
## S3 method for class 'tegarch'
coef(object, ...)
## S3 method for class 'tegarch'
fitted(object, verbose = FALSE, ...)
## S3 method for class 'tegarch'
logLik(object, ...)
## S3 method for class 'tegarch'
print(x, ...)
## S3 method for class 'tegarch'
residuals(object, standardised = TRUE, ...)
## S3 method for class 'tegarch'
summary(object, verbose = FALSE, ...)
## S3 method for class 'tegarch'
vcov(object, ...)
Arguments
object |
an object of class 'tegarch' |
x |
an object of class 'tegarch' |
verbose |
logical. If FALSE (default) then only basic information is returned |
standardised |
logical. If TRUE (default) then the standardised residuals are returned. If FALSE then the scaled (by sigma) residuals are returned |
... |
additional arguments |
Details
Empty
Value
coef: |
A numeric vector containing the parameter estimates |
fitted: |
A zoo object. If verbose=FALSE (default), then the zoo object is a vector containing the fitted conditional standard deviations. If verbose = TRUE, then the zoo object is a matrix containing the return series y, fitted scale (sigma), fitted conditional standard deviation (stdev), fitted log-scale (lambda), dynamic component(s) (lambdadagger in the 1-component specification, lambda1dagger and lambda2dagger in the 2-compoment specification), the score (u), scaled residuals (epsilon) and standardised residuals (residstd) |
logLik: |
The value of the log-likelihood at the maximum |
print: |
Prints the most important parts of the estimation results |
residuals: |
A zoo object. If standardised = TRUE (default), then the zoo object is a vector with the standardised residuals. If standardised = FALSE, then the zoo vector contains the scaled residuals |
summary: |
A list. If verbose = FALSE, then only the most important entries are returned. If verbose = TRUE, then all entries apart from the 1st. (the y series) is returned |
vcov: |
The variance-covariance matrix of the estimated coefficents. The matrix is obtained by inverting the numerically estimated Hessian |
Author(s)
Genaro Sucarrat, https://www.sucarrat.net/
References
C. Fernandez and M. Steel (1998), 'On Bayesian Modeling of Fat Tails and Skewness', Journal of the American Statistical Association 93, pp. 359-371, doi:10.1080/01621459.1998.10474117
A. Harvey and G. Sucarrat (2014), 'EGARCH models with fat tails, skewness and leverage'. Computational Statistics and Data Analysis 76, pp. 320-338, doi:10.1016/j.csda.2013.09.022
G. Sucarrat (2013), 'betategarch: Simulation, Estimation and Forecasting of First-Order Beta-Skew-t-EGARCH models'. The R Journal (Volume 5/2), pp. 137-147, ,doi:10.32614/RJ-2013-034
See Also
tegarch
, coef
, fitted
, logLik
, predict.tegarch
, print
, residuals
, summary
, vcov
Examples
##simulate 1000 observations from model with default parameter values:
set.seed(123)
y <- tegarchSim(1000)
##estimate and store as 'mymodel':
mymod <- tegarch(y)
##print estimation result:
print(mymod)
##extract coefficients:
coef(mymod)
##extract log-likelihood:
logLik(mymod)
##plot fitted conditional standard deviations:
plot(fitted(mymod))
##plot all the fitted series:
plot(fitted(mymod, verbose=TRUE))
##histogram of standardised residuals:
hist(residuals(mymod))
The skewed t distribution
Description
Density, random number generation, mean, variance, skewness and kurtosis functions for the uncentred skewed t distribution. The skewing method is that of Fernandez and Steel (1998).
Usage
dST(y, df = 10, sd = 1, skew = 1, log = FALSE)
rST(n, df = 10, skew = 1)
STmean(df, skew = 1)
STvar(df, skew = 1)
STskewness(df, skew = 1)
STkurtosis(df, skew = 1)
Arguments
y |
numeric vector of quantiles |
n |
integer, the number of observations |
df |
degrees of freedom, greater than 0 and less than Inf |
sd |
scale, greater than 0 and less than Inf |
skew |
skewness, greater than 0 and less than Inf. Symmetry obtains when skew = 1 (default). |
log |
logical. TRUE returns the natural log of the density value, FALSE (default) returns the density value. |
Details
Empty
Value
dST: |
a numeric value, either the density value or the natural log of the density value |
rST: |
a numeric vector with n random numbers |
STmean: |
The mean of an uncentred skewed t variable |
STvar: |
The variance of an uncentred skewed t variable |
STskewness: |
3rd. moment of a standardised skewed t variable |
STkurtosis: |
4th. moment of a standardised skewed t variable |
Note
Empty
Author(s)
Genaro Sucarrat, https://www.sucarrat.net/
References
C. Fernandez and M. Steel (1998), 'On Bayesian Modeling of Fat Tails and Skewness', Journal of the American Statistical Association 93, pp. 359-371, doi:10.1080/01621459.1998.10474117
See Also
Examples
##generate 1000 random numbers from the skewed t:
set.seed(123)
eps <- rST(500, df=5) #symmetric t
eps <- rST(500, df=5, skew=0.8) #skewed to the left
eps <- rST(500, df=5, skew=2) #skewed to the right
##compare empirical mean with analytical:
mean(eps)
STmean(5, skew=2)
##compare empirical variance with analytical:
var(eps)
STvar(5, skew=2)
Daily Apple stock returns
Description
The dataset contains two variables, day and nasdaqret. Day is the date of the return and nasdaqret is the daily (closing value) log-return in percent of the Apple stock over the period 10 September 1985 - 10 May 2011 (a total of 6835 observations).
Usage
data(nasdaq)
Format
A data frame with 3215 observations:
day
a factor
nasdaqret
a numeric vector
Details
The data is studied in more detail in Harvey and Sucarrat (2014), and in Sucarrat (2013).
Source
The source of the original raw data is http://yahoo.finance.com/.
References
A. Harvey and G. Sucarrat (2014), 'EGARCH models with fat tails, skewness and leverage'. Computational Statistics and Data Analysis 76, pp. 320-338, doi:10.1016/j.csda.2013.09.022
G. Sucarrat (2013), 'betategarch: Simulation, Estimation and Forecasting of First-Order Beta-Skew-t-EGARCH models'. The R Journal (Volume 5/2), pp. 137-147, ,doi:10.32614/RJ-2013-034
Examples
data(nasdaq) #load data into workspace
mymod <- tegarch(nasdaq[,"nasdaqret"]) #estimate volatility model of Apple returns
print(mymod)
Generate volatility forecasts n-steps ahead
Description
Generates volatility forecasts from a model fitted by tegarch
(i.e. a Beta-Skew-t-EGARCH model)
Usage
## S3 method for class 'tegarch'
predict(object, n.ahead = 1, initial.values = NULL, n.sim = 10000,
verbose = FALSE, ...)
Arguments
object |
an object of class 'tegarch'. |
n.ahead |
the number of steps ahead for which prediction is required. |
initial.values |
a vector containing the initial values of lambda and lambdadagger (lambda1dagger and lambda2dagger for 2-component models). If NULL (default) then the fitted values associated with the last return-observation are used |
n.sim |
number of simulated skew t variates. |
verbose |
logical. If FALSE (default) then only the conditional standard deviations are returned. If TRUE then also the scale is returned. |
... |
additional arguments |
Details
The forecast formulas of exponential ARCH models are much more complicated than those of ordinary or non-exponential ARCH models. This is particularly the case when the conditional density is skewed. The forecast formula of the conditional scale of the Beta-Skew-t-EGARCH model is not available in closed form. Accordingly, some terms (expectations involving the skewed t) are estimated numerically by means of simulation.
Value
A zoo
object. If verbose = FALSE, then the zoo object is a vector with the forecasted conditional standard deviations. If verbose = TRUE, then the zoo object is a matrix with forecasts of both the conditional scale and the conditional standard deviation
Author(s)
Genaro Sucarrat, http://www.sucarrat.net/
References
C. Fernandez and M. Steel (1998), 'On Bayesian Modeling of Fat Tails and Skewness', Journal of the American Statistical Association 93, pp. 359-371, doi:10.1080/01621459.1998.10474117
A. Harvey and G. Sucarrat (2014), 'EGARCH models with fat tails, skewness and leverage'. Computational Statistics and Data Analysis 76, pp. 320-338, doi:10.1016/j.csda.2013.09.022
G. Sucarrat (2013), 'betategarch: Simulation, Estimation and Forecasting of First-Order Beta-Skew-t-EGARCH models'. The R Journal (Volume 5/2), pp. 137-147, ,doi:10.32614/RJ-2013-034
See Also
Examples
##simulate series with 500 observations:
set.seed(123)
y <- tegarchSim(500, omega=0.01, phi1=0.9, kappa1=0.1, kappastar=0.05, df=10, skew=0.8)
##estimate a 1st. order Beta-t-EGARCH model and store the output in mymod:
mymod <- tegarch(y)
##plot forecasts of volatility 1-step ahead up to 10-steps ahead:
plot(predict(mymod, n.ahead=10))
Estimate first order Beta-Skew-t-EGARCH models
Description
Fits a first order Beta-Skew-t-EGARCH model to a univariate time-series by exact Maximum Likelihood (ML) estimation. Estimation is via the nlminb
function
Usage
tegarch(y, asym = TRUE, skew = TRUE, components = 1, initial.values = NULL,
lower = NULL, upper = NULL, hessian = TRUE, lambda.initial = NULL,
c.code = TRUE, logl.penalty = NULL, aux = NULL, ...)
Arguments
y |
numeric vector, typically a financial return series. |
asym |
logical. TRUE (default) includes leverage or volatility asymmetry in the log-scale specification |
skew |
logical. TRUE (default) enables and estimates the skewness in conditional density (epsilon). The skewness method is that of Fernandez and Steel (1998) |
components |
Numeric value, either 1 (default) or 2. The former estimates a 1-component model, the latter a 2-component model |
initial.values |
NULL (default) or a vector with the initial values. If NULL, then the values are automatically chosen according to model (with or without skewness, 1 or 2 components, etc.) |
lower |
NULL (default) or a vector with the lower bounds of the parameter space. If NULL, then the values are automatically chosen |
upper |
NULL (default) or a vector with the upper bounds of the parameter space. If NULL, then the values are automatically chosen |
hessian |
logical. If TRUE (default) then the Hessian is computed numerically via the optimHess function. Setting hessian=FALSE speeds up estimation, which might be particularly useful in simulation. However, it also slows down the extraction of the variance-covariance matrix by means of the vcov method. |
lambda.initial |
NULL (default) or a vector with the initial value(s) of the recursion for lambda and lambdadagger. If NULL then the values are chosen automatically |
c.code |
logical. TRUE (default) is faster since it makes use of compiled C-code |
logl.penalty |
NULL (default) or a numeric value. If NULL then the log-likelihood value associated with the initial values is used. Sometimes estimation can result in NA and/or +/-Inf values, which are fatal for simulations. The value logl.penalty is the value returned by the log-likelihood function in the presence of NA or +/-Inf values |
aux |
NULL (default) or a list, se code. Useful for simulations (speeds them up) |
... |
further arguments passed to the nlminb function |
Value
Returns a list of class 'tegarch' with the following elements:
y |
the series used for estimation. |
date |
date and time of estimation. |
initial.values |
initial values used in estimation. |
lower |
lower bounds used in estimation. |
upper |
upper bounds used in estimation. |
lambda.initial |
initial values of lambda provided by the user, if any. |
model |
type of model estimated. |
hessian |
the numerically estimated Hessian. |
sic |
the value of the Schwarz (1978) information criterion. |
par |
parameter estimates. |
objective |
value of the log-likelihood at the maximum. |
convergence |
an integer code. 0 indicates successful convergence, see the documentation of nlminb. |
iterations |
number of iterations, see the documentation of nlminb. |
evaluations |
number of evaluations of the objective and gradient functions, see the documentation of nlminb. |
message |
a character string giving any additional information returned by the optimizer, or NULL. For details, see PORT documentation and the nlminb documentation. |
NOTE |
an additional message returned if one tries to estimate a 2-component model without leverage. |
Note
Empty
Author(s)
Genaro Sucarrat, http://www.sucarrat.net/
References
C. Fernandez and M. Steel (1998), 'On Bayesian Modeling of Fat Tails and Skewness', Journal of the American Statistical Association 93, pp. 359-371, doi:10.1080/01621459.1998.10474117
A. Harvey and G. Sucarrat (2014), 'EGARCH models with fat tails, skewness and leverage'. Computational Statistics and Data Analysis 76, pp. 320-338, doi:10.1016/j.csda.2013.09.022
D. Nelson (1991): 'Conditional Heteroskedasticity in Asset Returns: A New Approach', Econometrica 59, pp. 347-370.
G. Schwarz (1978), 'Estimating the Dimension of a Model', The Annals of Statistics 6, pp. 461-464.
G. Sucarrat (2013), 'betategarch: Simulation, Estimation and Forecasting of First-Order Beta-Skew-t-EGARCH models'. The R Journal (Volume 5/2), pp. 137-147, ,doi:10.32614/RJ-2013-034
See Also
tegarchSim
, coef.tegarch
, fitted.tegarch
, logLik.tegarch
, predict.tegarch
, print.tegarch
, residuals.tegarch
, summary.tegarch
, vcov.tegarch
Examples
##simulate series with 500 observations:
set.seed(123)
y <- tegarchSim(500, omega=0.01, phi1=0.9, kappa1=0.1, kappastar=0.05,
df=10, skew=0.8)
##estimate a 1st. order Beta-t-EGARCH model and store the output in mymod:
mymod <- tegarch(y)
##print estimates and standard errors:
print(mymod)
##graph of fitted volatility (conditional standard deviation):
plot(fitted(mymod))
##graph of fitted volatility and more:
plot(fitted(mymod, verbose=TRUE))
##plot forecasts of volatility 1-step ahead up to 20-steps ahead:
plot(predict(mymod, n.ahead=20))
##full variance-covariance matrix:
vcov(mymod)
Auxiliary functions
Description
tegarchLogl, tegarchLogl2, tegarchRecursion and tegarchRecursion2 are auxiliary functions called by tegarch
, and which are not intended to be used for the average user. Henceforth they are thusonly scarcely documented, but most should either be self-explanatory (for the non-average user!) or more or less documented in relation with the tegarch
and tegarchSim
functions.
Usage
##the '2' relates to the 2-component specification:
tegarchLogl(y, pars, lower = -Inf, upper = Inf, lambda.initial = NULL,
logl.penalty = -1e+100, c.code = TRUE, aux = NULL)
tegarchLogl2(y, pars, lower = -Inf, upper = Inf, lambda.initial = NULL,
logl.penalty = -1e+101, c.code = TRUE, aux = NULL)
tegarchRecursion(y, omega = 0.1, phi1 = 0.4, kappa1 = 0.2, kappastar = 0.1,
df = 10, skew = 0.6, lambda.initial = NULL, c.code = TRUE, verbose = FALSE,
aux = NULL)
tegarchRecursion2(y, omega = 0.1, phi1 = 0.4, phi2 = 0.2, kappa1 = 0.05,
kappa2 = 0.1, kappastar = 0.02, df = 10, skew = 0.6, lambda.initial = NULL,
c.code = TRUE, verbose = FALSE, aux = NULL)
Arguments
y |
numeric vector, typically a financial return series |
omega |
numeric |
phi1 |
numeric, must be less than 1 in absolute value |
phi2 |
numeric, must be less than 1 in absolute value |
kappa1 |
numeric |
kappa2 |
numeric |
kappastar |
numeric |
df |
numeric, the value of df (degrees of freedom) |
skew |
numeric (positive), the value of skew (skewness parameter) |
verbose |
logical. If FALSE (default) then only lambda is returned. If TRUE then a matrix with y and the fitted values of, amongst other, sigma, the log-scale (lambda), the conditional standard deviation (stdev), u, epsilon and the standardised residuals (residstd) are returned |
pars |
numeric vector, the parameter values |
lower |
numeric vector, the lower bounds used during estimation |
upper |
numeric vector, the upper bounds used during estimation |
lambda.initial |
NULL (default) or initial value(s) of the recursion for lambda. If NULL, then the values are chosen automatically |
logl.penalty |
numeric value |
c.code |
logical. TRUE (default) is faster since it makes use of compiled C-code |
aux |
NULL (default) or a list, se |
Details
tegarchLogl and tegarchLogl2 return the value of the log-likelihood for a 1-component and 2-component model, respectively.
Value
tegarchLogl: |
The log-likelihood value (i.e. a numeric) of a 1-component specification |
tegarchLogl2: |
The log-likelihood value (i.e. a numeric) of a 2-component specification |
tegarchRecursion: |
A numeric vector containing the lambda values if verbose=FALSE (default). If verbose=TRUE then a matrix then a matrix with y and the fitted values of sigma, the log-scale (lambda), the conditional standard deviation (stdev), u, epsilon and the standardised residuals (residstd) are returned |
tegarchRecursion2: |
A numeric vector containing the lambda values if verbose=FALSE (default). If verbose=TRUE, then a matrix then a matrix with y and the fitted values of sigma, the log-scale (lambda), the conditional standard deviation (stdev), u, epsilon and the standardised residuals (residstd) are returned |
Author(s)
Genaro Sucarrat, http://www.sucarrat.net/
References
C. Fernandez and M. Steel (1998), 'On Bayesian Modeling of Fat Tails and Skewness', Journal of the American Statistical Association 93, pp. 359-371, doi:10.1080/01621459.1998.10474117
A. Harvey and G. Sucarrat (2014), 'EGARCH models with fat tails, skewness and leverage'. Computational Statistics and Data Analysis 76, pp. 320-338, doi:10.1016/j.csda.2013.09.022
G. Sucarrat (2013), 'betategarch: Simulation, Estimation and Forecasting of First-Order Beta-Skew-t-EGARCH models'. The R Journal (Volume 5/2), pp. 137-147, ,doi:10.32614/RJ-2013-034
See Also
tegarch
, tegarchSim
, fitted.tegarch
Simulate from a first order Beta-Skew-t-EGARCH model
Description
Simulate the y series (typically interpreted as a financial return or the error in a regression) from a first order Beta-Skew-t-EGARCH model. Optionally, the conditional scale (sigma), log-scale (lambda), conditional standard deviation (stdev), dynamic components (lambdadagger in the 1-component specification, lambda1dagger and lambda2dagger in the 2-component specification), score (u) and centred innovations (epsilon) are also returned.
Usage
tegarchSim(n, omega = 0, phi1 = 0.95, phi2 = 0, kappa1 = 0.01, kappa2 = 0,
kappastar = 0, df = 10, skew = 1, lambda.initial = NULL, verbose = FALSE)
Arguments
n |
integer, length of y (i.e. no of observations) |
omega |
numeric, the value of omega |
phi1 |
numeric, the value of phi1 |
phi2 |
numeric, the value of phi2 |
kappa1 |
numeric, the value of kappa1 |
kappa2 |
numeric, the value of kappa2 |
kappastar |
numeric, the value of kappastar |
df |
numeric, the value of df (degrees of freedom) |
skew |
numeric, the value of skew (skewness parameter |
lambda.initial |
NULL (default) or initial value(s) of the recursion for lambda or log-volatility. If NULL then the values are chosen automatically |
verbose |
logical, TRUE or FALSE (default). If TRUE then a matrix with n rows containing y, sigma, lambda, lambdadagger, u and epsilon is returned. If FALSE then only y is returned |
Details
Empty
Value
A zoo
vector of length n
or a zoo
matrix with n rows, depending on the value of verbose.
Author(s)
Genaro Sucarrat, http://www.sucarrat.net/
References
C. Fernandez and M. Steel (1998), 'On Bayesian Modeling of Fat Tails and Skewness', Journal of the American Statistical Association 93, pp. 359-371, doi:10.1080/01621459.1998.10474117
A. Harvey and G. Sucarrat (2014), 'EGARCH models with fat tails, skewness and leverage'. Computational Statistics and Data Analysis 76, pp. 320-338, doi:10.1016/j.csda.2013.09.022
G. Sucarrat (2013), 'betategarch: Simulation, Estimation and Forecasting of First-Order Beta-Skew-t-EGARCH models'. The R Journal (Volume 5/2), pp. 137-147, ,doi:10.32614/RJ-2013-034
See Also
Examples
##1-component specification: simulate series with 500 observations:
set.seed(123)
y <- tegarchSim(500, omega=0.01, phi1=0.9, kappa1=0.1, kappastar=0.05,
df=10, skew=0.8)
##simulate the same series, but with more output (volatility, log-volatility or
##lambda, lambdadagger, u and epsilon)
set.seed(123)
y <- tegarchSim(500, omega=0.01, phi1=0.9, kappa1=0.1, kappastar=0.05, df=10, skew=0.8,
verbose=TRUE)
##plot the simulated values:
plot(y)
##2-component specification: simulate series with 500 observations:
set.seed(123)
y <- tegarchSim(500, omega=0.01, phi1=0.95, phi2=0.9, kappa1=0.01, kappa2=0.05,
kappastar=0.03, df=10, skew=0.8)