| Type: | Package | 
| Title: | The Chi Distribution | 
| Version: | 0.1 | 
| URL: | https://github.com/dkahle/chi | 
| BugReports: | https://github.com/dkahle/chi/issues | 
| Description: | Light weight implementation of the standard distribution functions for the chi distribution, wrapping those for the chi-squared distribution in the stats package. | 
| License: | GPL-2 | 
| RoxygenNote: | 6.0.1 | 
| NeedsCompilation: | no | 
| Packaged: | 2017-05-07 03:05:30 UTC; david_kahle | 
| Author: | David Kahle [aut, cre, cph] | 
| Maintainer: | David Kahle <david.kahle@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2017-05-07 05:22:54 UTC | 
The Chi Distribution
Description
Density, distribution function, quantile function and random generation for the chi distribution.
Usage
dchi(x, df, ncp = 0, log = FALSE)
pchi(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchi(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
rchi(n, df, ncp = 0)
Arguments
| x,q | vector of quantiles. | 
| df | degrees of freedom (non-negative, but can be non-integer). | 
| ncp | non-centrality parameter (non-negative). | 
| log,log.p | logical; if TRUE, probabilities p are given as log(p). | 
| lower.tail | logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x]. | 
| p | vector of probabilities. | 
| n | number of observations. If length(n) > 1, the length is taken to be the number required. | 
Details
The functions (d/p/q/r)chi simply wrap those of the standard 
(d/p/q/r)chisq R implementation, so look at, say, 
dchisq for details.
See Also
dchisq; these functions just wrap the 
(d/p/q/r)chisq functions.
Examples
s <- seq(0, 5, .01)
plot(s, dchi(s, 7), type = 'l')
f <- function(x) dchi(x, 7)
q <- 2
integrate(f, 0, q)
(p <- pchi(q, 7))
qchi(p, 7) # = q
mean(rchi(1e5, 7) <= q)
samples <- rchi(1e5, 7)
plot(density(samples))
curve(f, add = TRUE, col = "red")
The Inverse Chi Distribution
Description
Density, distribution function, quantile function and random generation for the inverse chi distribution.
Usage
dinvchi(x, df, ncp = 0, log = FALSE)
pinvchi(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qinvchi(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
rinvchi(n, df, ncp = 0)
Arguments
| x,q | vector of quantiles. | 
| df | degrees of freedom (non-negative, but can be non-integer). | 
| ncp | non-centrality parameter (non-negative). | 
| log,log.p | logical; if TRUE, probabilities p are given as log(p). | 
| lower.tail | logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x]. | 
| p | vector of probabilities. | 
| n | number of observations. If length(n) > 1, the length is taken to be the number required. | 
See Also
Examples
s <- seq(0, 2, .01)
plot(s, dinvchi(s, 7), type = 'l')
f <- function(x) dinvchi(x, 7)
q <- .5
integrate(f, 0, q)
(p <- pinvchi(q, 7))
qinvchi(p, 7) # = q
mean(rinvchi(1e5, 7) <= q)
samples <- rinvchi(1e5, 7)
plot(density(samples))
curve(f, add = TRUE, col = "red")