--- title: "Getting started with connector.databricks" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{connectordatabricks} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` The connector.databricks package provides a convenient interface for accessing and interacting with Databricks tables and volumes directly from R. ## Introduction This vignette will guide you through the process of connecting to a Databricks, retrieving data, and performing various operations using this package. ## Connecting to a Databricks ### Without connector package To get started, you need to establish a connection to your Databricks cluster or volume storage. Use: * `connector_databricks_table()` function to authenticate and connect to your Databricks cluster * `connector_databricks_volume()` function to connect to your Databricks volume storage Here's an example of how to do this: ```{r, eval=FALSE} library(connector.databricks) # Connect to databricks tables using DBI con <- connector_databricks_table( http_path = "path-to-cluster", catalog = "my_catalog", schema = "my_schema" ) # Connect to databricks volume con <- connector_databricks_volume( catalog = "my_catalog", schema = "my_schema", path = "path-to-file-storage" ) ``` ### With connector package (recommended) If you are using the connector package, you can connect to a Databricks datasources using the `connect()` function. This function based on a configuration file or a list creates a `connectors()` object with a `connector`for each of the specified datasources (for detailed explanation have a look at the `connector` package). Configuration file for connecting to Databricks should look like this: ```{yaml} metadata: catalog: "databricks_calatog" http_path: "path-to-cluster" path: "path-to-file-storage" project: "project_name" trial: "trial_name" datasources: - name: "tables" backend: type: "connector.databricks::connector_databricks_table" http_path: "{metadata.http_path}" catalog: "{metadata.catalog}" schema: "{metadata.project}_{metadata.trial}_adam" - name: "volume" backend: type: "connector.databricks::connector_databricks_volume" path: "{metadata.path}" catalog: "{metadata.catalog}" schema: "{metadata.project}_{metadata.trial}_tfl" ``` Save this to `_connector.yml` file and use the `connect()` function to connect to Databricks: ```{r, eval=FALSE} library(connector) # Create connector object db <- connect() ``` Now you can access the Databricks cluster and volume using the `db` object and `tables` or `volume` field, respectively. ```{r, eval=FALSE} # Connection to Databricks cluster. This will print object details db$tables # Connection to Databricks cluster. This will print object details db$volume ``` After the setup is done we can use these connections to manipulate Databricks data. ## Listing data You can do some basic directory operations, such as creating, removing, and listing data inside directory, or listing tables inside database. ```{r, eval=FALSE} # Create a directory db$volume |> create_directory_cnt("new_directory") # Remove a directory db$volume |> remove_directory_cnt("new_directory") # List content inside volume directory db$volume |> list_content_cnt() # List tables inside database db$tables |> list_content_cnt() ``` ## Reading and writing data The `connector` packages provide a set of functions to read and write data from/to the datasources. They all have similar interface, so it's easy to switch between them. Now, we will show how to read and write different types of data from/to Databricks. In these examples we will be using `iris` and `mtcars` datasets. Here is an example of writing data to a table on a cluster: ```{r eval=FALSE} library(dplyr) # Manipulate data ## Iris data setosa <- iris |> filter(Species == "setosa") mean_for_all_iris <- iris |> group_by(Species) |> summarise_all(list(mean, median, sd, min, max)) ## mtcars data cars <- mtcars |> filter(mpg > 22) mean_for_all_mtcars <- mtcars |> group_by(gear) |> summarise(across( everything(), list( "mean" = mean, "median" = median, "sd" = sd, "min" = min, "max" = max ), .names = "{.col}_{.fn}" )) |> tidyr::pivot_longer( cols = -gear, names_to = c(".value", "stat"), names_sep = "_" ) ## Store data db$tables |> write_cnt(setosa, "setosa", overwrite = TRUE) db$tables |> write_cnt(mean_for_all_iris, "mean_iris", overwrite = TRUE) db$tables |> write_cnt(cars, "cars_mpg", overwrite = TRUE) db$tables |> write_cnt(mean_for_all_mtcars, "mean_mtcars", overwrite = TRUE) ``` Now, let's read the data back manipulate it a bit and write it to the Databricks volume. This way we can save different types of data in different formats. ```{r eval=FALSE} library(gt) library(tidyr) library(ggplot2) # List and load data from cluster db$tables |> list_content_cnt() table <- db$tables |> read_cnt("mean_mtcars") gttable <- table |> gt(groupname_col = "gear") # Save non-tabular data to databricks volume tmp_file <- tempfile(fileext = ".docx") gtsave(gttable, tmp_file) db$volume |> upload_cnt(tmp_file, "tmeanallmtcars.docx") # Manipulate data setosa_fsetosa <- db$tables |> read_cnt("setosa") |> filter(Sepal.Length > 5) fsetosa <- ggplot(setosa) + aes(x = Sepal.Length, y = Sepal.Width) + geom_point() ## Store data into output location db$volume |> write_cnt(fsetosa$data, "fsetosa.csv") db$volume |> write_cnt(fsetosa, "fsetosa.rds") tmp_file <- tempfile(fileext = ".png") ggsave(tmp_file, fsetosa) db$volume |> upload_cnt(tmp_file, "fsetosa.png") ``` ## Conclusion In this vignette we showed how to connect to Databricks datasources, read and write data from them. We also showed how to use the connector package to connect to Databricks and how to manipulate data using the connector package.