Title: | Assess the Stability of Candidate Housekeeping Genes |
Version: | 1.0.1 |
Description: | A simple way to assess the stability of candidate housekeeping genes is implemented in this package. |
Depends: | R (≥ 3.2.3) |
Imports: | psych,stats,graphics |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
LazyData: | true |
RoxygenNote: | 6.1.1 |
URL: | http://www.bioinf.com.cn/ |
NeedsCompilation: | no |
Packaged: | 2019-07-04 03:19:16 UTC; admin |
Author: | Shanliang Zhong [aut, cre] |
Maintainer: | Shanliang Zhong <slzhong@foxmail.com> |
Repository: | CRAN |
Date/Publication: | 2019-07-04 09:40:28 UTC |
Reload Saved Datasets
Description
The normalized expression level of the ten housekeeping genes in fibroblast cells
Details
The normalized expression level of the ten housekeeping genes in fibroblast cells
References
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.
Reload Saved Datasets
Description
The CT values of the ten housekeeping genes in fibroblast cells
Details
The CT values of the ten housekeeping genes in fibroblast cells
References
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.
Determines stability of genes
Description
This function combines the results of cpSta(), pearsonCor() and bki().
Usage
bestKeeper(expression, ctVal = TRUE)
Arguments
expression |
a matrix of expression levels. Each row corresponds to a sample and each column to a gene. |
ctVal |
a logical value indicating data type. If ct-values are input, ctVal=TRUE, otherwise, ctVal=FALSE. |
Value
A list containing CP.statistics, pair.Wise.cor and HKG.vs.BestKeeper, which are returned by cpSta(), pearsonCor() and bki(), respectively.
References
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Biotechnol Lett (2004) <doi: 10.1023/B:BILE.0000019559.84305.47>
Examples
FIBct
bestKeeper(FIBct)
Analyzes genes versus BestKeeper index
Description
All genes are combined into an index. Then, correlation between each genes and the index is calculated, describing the relation between the index and the contributing gene by the Pearson correlation coefficient (r), coefficient of determination (r2) and the p-value.
Usage
bki(expression, ctVal = TRUE)
Arguments
expression |
a matrix of expression levels. Each row corresponds to a sample and each column to a gene. |
ctVal |
a logical value indicating data type. If ct-values are input, ctVal=TRUE, otherwise, ctVal=FALSE. |
Value
A matrix of the Pearson correlation coefficient (r), coefficient of determination (r2) and the p-value.
References
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Biotechnol Lett (2004) <doi: 10.1023/B:BILE.0000019559.84305.47>
Examples
FIBct
bki(FIBct)
Calculates descriptive statistics
Description
This function calculates descriptive statistics of genes.
Usage
cpSta(expression, ctVal = TRUE)
Arguments
expression |
a matrix of expression levels. Each row corresponds to a sample and each column to a gene. |
ctVal |
a logical value indicating data type. If ct-values are input, ctVal=TRUE, otherwise, ctVal=FALSE. |
Value
A matrix of descriptive statistics:
N: number of samples;
GM[CP]: the geometric mean of CP;
AM[CP]: the arithmetic mean of CP;
Min[CP] and Max [CP]: the extreme values of CP;
SD[+/- CP]: the standard deviation of the CP;
CV[CP]: the coefficient of variance expressed as a percentage on the CP level;
Min[x-fold] and Max [x-fold]: the extreme values of expression levels expressed as an absolute x-fold over- or under-regulation coefficient;
SD[+/- x-fold]: standard deviation of the absolute regulation coefficients.
References
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Biotechnol Lett (2004) <doi: 10.1023/B:BILE.0000019559.84305.47>
Examples
FIBct
cpSta(FIBct)
Ranks genes
Description
Uses the geNorm algorithm to determine the most stably expressed genes.
Usage
geNorm(expression, genes = data.frame(Genes = character(0), Avg.M =
numeric(0)), ctVal = TRUE)
Arguments
expression |
a matrix of expression levels. Each row corresponds to a sample and each column to a gene. |
genes |
a data frame to output the result of the function |
ctVal |
a logical value indicating data type. If ct-values are input, ctVal=TRUE, otherwise, ctVal=FALSE. |
Value
A sorted dataframe with two columns, 'Genes' and 'Avg.M'. The last two genes are the two most stable control genes.
Avg.M is average expression stability values (M) of remaining control genes during stepwise exclusion of the least stable control gene.
References
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.
Examples
FIB
geNorm(FIB,ctVal=FALSE)
FIBct
geNorm(FIBct)
Ranks genes
Description
Uses the geNorm algorithm to determine the most stably expressed genes.
Usage
geNorm2(expression, genes = data.frame(Genes = character(0), Avg.M =
numeric(0)), ctVal = TRUE)
Arguments
expression |
a matrix of expression levels. Each row corresponds to a sample and each column to a gene. |
genes |
a data frame to output the result of the function |
ctVal |
a logical value indicating data type. If ct-values are input, ctVal=TRUE, otherwise, ctVal=FALSE. |
Value
A sorted dataframe with two columns, 'Genes' and 'Avg.M'. The last two genes are the two most stable control genes.
Avg.M is average expression stability values (M) of remaining control genes during stepwise exclusion of the least stable control gene.
References
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.
Examples
FIB
geNorm2(FIB,ctVal=FALSE)
FIBct
geNorm2(FIBct)
Calculates measure M
Description
This function calculates measure M according to algorithm of geNorm
Usage
measureM(expression, ctVal = TRUE)
Arguments
expression |
a matrix of expression levels. Each row corresponds to a sample and each column to a gene. |
ctVal |
a logical value indicating data type. If ct-values are input, ctVal=TRUE, otherwise, ctVal=FALSE. |
Value
A sorted dataframe with two columns, 'Genes' and 'M' (the relative stability; lower means more stable).
References
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.
Examples
FIB
measureM(FIB,ctVal=FALSE)
FIBct
measureM(FIBct)
Calculates V(n+1/n) values
Description
Useful for establishing the quality of your normalization regime. See Vandesompele 2002 for advice on interpretation.
Usage
pairwiseV(expression, ctVal = TRUE)
Arguments
expression |
a matrix of expression levels. Each row corresponds to a sample and each column to a gene. |
ctVal |
a logical value indicating data type. If ct-values are input, ctVal=TRUE, otherwise, ctVal=FALSE. |
Value
A Series of values [V2/3, V3/V4, V4/V5, ...].
References
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.
Examples
FIB
pairwiseV(FIB,ctVal=FALSE)
FIBct
pairwiseV(FIBct)
Analyzes pair-wise correlation
Description
This function performs numerous pair-wise correlation analyses of genes. Within each such correlation the Pearson correlation coefficient (r) and the probability p value are calculated.
Usage
pearsonCor(expression, ctVal = TRUE)
Arguments
expression |
a matrix of expression levels. Each row corresponds to a sample and each column to a gene. |
ctVal |
a logical value indicating data type. If ct-values are input, ctVal=TRUE, otherwise, ctVal=FALSE. |
Value
A matrix of the Pearson correlation coefficient (r) and the probability p value.
References
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Biotechnol Lett (2004) <doi: 10.1023/B:BILE.0000019559.84305.47>
Examples
FIBct
pearsonCor(FIBct)
Plots average M of remaining genes
Description
This function plots the average expression stability values of remaining control genes.
Usage
plotM(Mrem)
Arguments
Mrem |
the result returned by function of geNorm() |
References
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.
Examples
FIB
x=geNorm(FIB,ctVal=FALSE)
plotM(x)
FIBct
y=geNorm(FIBct)
plotM(y)
Plots V(n+1/n) values
Description
This function plots the average expression stability values of remaining control genes.
Usage
plotV(Vs)
Arguments
Vs |
the result returned by function of pairwiseV() |
References
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.
Examples
FIB
Vs1=pairwiseV(FIB,ctVal=F)
plotV(Vs1)
FIBct
Vs2=pairwiseV(FIBct)
plotV(Vs2)