Allows for the specification of semi-structured deep distributional regression models which are fitted in a neural network as 
    proposed by Ruegamer et al. (2023) <doi:10.18637/jss.v105.i02>.
    Predictors can be modeled using structured (penalized) linear effects, structured non-linear effects or using an unstructured deep network model.
| Version: | 2.3.2 | 
| Depends: | R (≥ 4.0.0), tensorflow (≥ 2.2.0), tfprobability, keras (≥
2.2.0) | 
| Imports: | mgcv, dplyr, R6, reticulate (≥ 1.14), Matrix, magrittr, tfruns, methods, coro (≥ 1.0.3), torchvision (≥ 0.5.1), luz (≥ 0.4.0), torch | 
| Suggests: | testthat, knitr, covr | 
| Published: | 2025-09-06 | 
| DOI: | 10.32614/CRAN.package.deepregression | 
| Author: | David Ruegamer [aut, cre],
  Christopher Marquardt [ctb],
  Laetitia Frost [ctb],
  Florian Pfisterer [ctb],
  Philipp Baumann [ctb],
  Chris Kolb [ctb],
  Lucas Kook [ctb] | 
| Maintainer: | David Ruegamer  <david.ruegamer at gmail.com> | 
| License: | GPL-3 | 
| NeedsCompilation: | no | 
| Citation: | deepregression citation info | 
| CRAN checks: | deepregression results |