---
title: "dr4pl derivatives"
author: "Justin T. Landis and Alice Peng"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{dr4pl derivatives}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
This vignette is intended for the maintainer of the `dr4pl` package and to show how the first order and second order derivatives are calculated.
The proof sections will sometimes make use of the following rules
#### power rule
$$
\begin{align}
  \tag{0.1}
  \frac{\partial}{\partial x}[x^{n}] = n\cdot x ^{n-1}
\end{align}
$$
#### product rule
$$
\begin{align}
  \tag{0.2}
  \frac{\partial}{\partial x}[g(x)\cdot h(x)] = \frac{\partial g}{\partial x}\cdot h(x) + g(x)\cdot \frac{\partial h}{\partial x}
\end{align}
$$
#### chain rule
$$
\begin{align}
  \tag{0.3}
  \frac{\partial}{\partial x} [g(h(x))] = \frac{\partial g}{\partial h}\cdot\frac{\partial h}{\partial x}
\end{align}
$$
#### Clairaut's Theorem
Given $F(x,y)$ is defined on a plane that contains points (a,b), and $F_{xy}$ and $F_{yx}$ are continuous on that plane then: 
$$
\begin{align}
  \tag{0.4}
  \frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x}
\end{align}
$$
proof
$$
\begin{align}
  \tag{4.1}
  \frac{\partial\bar{f}}{\partial\theta_1} = \frac{\partial}{\partial\theta_1}(\theta_1 + \frac{\theta_4 - \theta_1}{1 + \bar{\rho}})
\end{align}
$$
$$
\begin{align}
  \tag{4.2}
  = \frac{\partial}{\partial\theta_1}\theta_1 + \frac{\partial}{\partial\theta_1}(\frac{\theta_4 - \theta_1}{1 + \bar{\rho}}))
\end{align}
$$
$$
\begin{align}
  \tag{4.3}
  \frac{\partial\bar{f}}{\partial\theta_1} = 1 - \frac{1}{1 + \bar{\rho}}
\end{align}
$$
proof
$$
\begin{align}
  \tag{5.1}
  \frac{\partial\bar{f}}{\partial\bar{\theta_2}} = \frac{\partial}{\partial\bar{\theta_2}}[\theta_1 + \frac{\theta_4 - \theta_1}{1 + \bar{\rho}}]
\end{align}
$$
we can rewrite the right hand side in the following manor by first removing the $\theta_1$ term and rewriting the quotient as a product.
$$
\begin{align}
  \tag{5.2}
   = \frac{\partial}{\partial\bar{\theta_2}}[(\theta_4 - \theta_1)\cdot(1 + \bar{\rho})^{-1}]
\end{align}
$$
by the product rule:
$$
\begin{align}
  \tag{5.3}
  = \frac{\partial}{\partial\bar{\theta_2}}[\theta_4 - \theta_1]\cdot(1 + \bar{\rho})^{-1} + \frac{\partial}{\partial \bar{\theta_2}}[(1 + \bar{\rho})^{-1}]\cdot(\theta_4-\theta_1)
\end{align}
$$
$$
\begin{align}
  \tag{5.4}
   = 0 + \frac{\partial}{\partial \bar{\theta_2}}[(1 + \bar{\rho})^{-1}]\cdot(\theta_4-\theta_1)
\end{align}
$$
by the power and chain rule we get
$$
\begin{align}
  \tag{5.5}
   = -(1 + \bar{\rho})^{-2}\cdot(\theta_4-\theta_1)\cdot \frac{\partial \bar{\rho}}{\partial \bar{\theta_2}}
\end{align}
$$
$$
\begin{align}
  \tag{5.6}
   = -\frac{\theta_4-\theta_1}{(1 + \bar{\rho})^{2}}\cdot \frac{\partial \bar{\rho}}{\partial \bar{\theta_2}}
\end{align}
$$
by equation (3.2) we arrive at
$$
\begin{align}
  \tag{5.7}
  \frac{\partial\bar{f}}{\partial\bar{\theta_2}} =\frac{\theta_4 - \theta_1}{(1 + \bar{\rho})^2}\cdot \ln(10)\cdot\bar{\rho}\cdot\theta_3
\end{align}
$$
proof
The proof to equation 6 has the same steps in equations (5.1) - (5.6), except we are deriving with respects to $\theta_3$
$$
\begin{align}
  \tag{6.1}
  \frac{\partial\bar{f}}{\partial\theta_3} = \frac{\partial}{\partial\theta_3}[\theta_1 + \frac{\theta_4 - \theta_1}{1 + \bar{\rho}}]
\end{align}
$$
we can rewrite the right hand side in the following manor by first removing the $\theta_1$ term and rewriting the quotient as a product.
$$
\begin{align}
  \tag{6.2}
   = \frac{\partial}{\partial\theta_3}[(\theta_4 - \theta_1)\cdot(1 + \bar{\rho})^{-1}]
\end{align}
$$
by the product rule:
$$
\begin{align}
  \tag{6.3}
  = \frac{\partial}{\partial\theta_3}[\theta_4 - \theta_1]\cdot(1 + \bar{\rho})^{-1} + \frac{\partial}{\partial \theta_3}[(1 + \bar{\rho})^{-1}]\cdot(\theta_4-\theta_1)
\end{align}
$$
$$
\begin{align}
  \tag{6.4}
   = 0 + \frac{\partial}{\partial \theta_3}[(1 + \bar{\rho})^{-1}]\cdot(\theta_4-\theta_1)
\end{align}
$$
by the power and chain rule we get
$$
\begin{align}
  \tag{6.5}
   = -(1 + \bar{\rho})^{-2}\cdot(\theta_4-\theta_1)\cdot \frac{\partial \bar{\rho}}{\partial \theta_3}
\end{align}
$$
$$
\begin{align}
  \tag{6.6}
   = -\frac{\theta_4-\theta_1}{(1 + \bar{\rho})^{2}}\cdot \frac{\partial \bar{\rho}}{\partial \theta_3}
\end{align}
$$
by equation (3.3) we arrive at
$$
\begin{align}
  \tag{6.7}
  \frac{\partial\bar{f}}{\partial\theta_3} =-\frac{\theta_4 - \theta_1}{(1 + \bar{\rho})^2}\cdot(x - \bar{\theta_2})\cdot\ln(10)\cdot\bar{\rho}
\end{align}
$$
proof
$$
\begin{align}
  \tag{7.1}
  \frac{\partial\bar{f}}{\partial\theta_4} = \frac{\partial}{\partial\theta_4}(\theta_1 + \frac{\theta_4 - \theta_1}{1 + \bar{\rho}})
\end{align}
$$
$$
\begin{align}
  \tag{7.2}
  = \frac{\partial}{\partial\theta_4}\theta_1 + \frac{\partial}{\partial\theta_4}(\frac{\theta_4 - \theta_1}{1 + \bar{\rho}}))
\end{align}
$$
$$
\begin{align}
  \tag{7.3}
  \frac{\partial\bar{f}}{\partial\theta_4} = \frac{1}{1 + \bar{\rho}}
\end{align}
$$
proof
$$
\begin{align}
  \tag{8.1}
  \frac{\partial f}{\partial\theta_2} = \frac{\partial f}{\partial \bar{\theta_2}}\cdot\frac{\partial \bar{\theta_2}}{\partial \theta_2}
\end{align}
$$
$$
\begin{align}
  \tag{8.1.1}
  \frac{\partial \bar{\theta_2}}{\partial \theta_2} = \log_{10} e \cdot \frac{1}{\theta_2} = \frac{1}{\ln10\cdot\theta_2}
\end{align}
$$
and by equation (5) we arrive at
$$
\begin{align}
  \tag{8.2}
  \frac{\partial f}{\partial\theta_2} = \frac{\partial f}{\partial \bar{\theta_2}}\cdot\frac{\partial \bar{\theta_2}}{\partial \theta_2}
\end{align}
$$
$$
\begin{align}
  \tag{8.3}
  = \frac{\theta_4 - \theta_1}{(1 + \bar{\rho})^2}\cdot \ln(10)\cdot\bar{\rho}\cdot\theta_3\cdot\frac{1}{\ln10\cdot\theta_2}
\end{align}
$$
$$
\begin{align}
=\frac{\theta_3}{\theta_2}\cdot\frac{\theta_4 - \theta_1}{(1 + \rho)^2}\cdot \rho
\end{align}
$$
proof
$$
\begin{align}
  \tag{8.1}
  \frac{\partial^2 f}{\partial \theta_1^2} = \frac{\partial}{\partial \theta_1}[\frac{\partial f}{\partial \theta_1}]
\end{align}
$$
$$
\begin{align}
  \tag{8.2}
  = \frac{\partial}{\partial \theta_1}[1 - \frac{1}{1 + \bar{\rho}}]
\end{align}
$$
$$
\begin{align}
  \tag{8.3}
  = 0
\end{align}
$$
proof
$$
\begin{align}
	\tag{9.1}
	\frac{\partial^2 f}{\partial \theta_1\partial\bar{\theta_2}} = \frac{\partial}{\partial \theta_1}[\frac{\partial f}{\partial \bar{\theta_2}}]
\end{align}
$$
by equation (5.6)
$$
\begin{align}
	\tag{9.2}
	= \frac{\partial}{\partial \theta_1}[-\frac{\theta_4-\theta_1}{(1 + \bar{\rho})^{2}}\cdot \frac{\partial \bar{\rho}}{\partial \bar{\theta_2}}]
\end{align}
$$
Since neither equation (3.2)  nor $\bar{\rho}$ depends on $\theta_1$, we can treat them as a constants
$$
\begin{align}
	\tag{9.3}
	= -\frac{1}{(1+\bar{\rho})^2}\cdot \frac{\partial \bar{\rho}}{\partial \bar{\theta_2}}\cdot\frac{\partial}{\partial \theta_1}[\theta_4-\theta_1]
\end{align}
$$
$$
\begin{align}
	\tag{9.4}
  = \frac{\partial \bar{\rho}}{\partial\bar{\theta_2}}\cdot\frac{1}{(1+\bar{\rho})^2}
\end{align}
$$
proof
$$
\begin{align}
	\tag{10.1}
	\frac{\partial^2 f}{\partial\theta_1\partial\theta_3} = \frac{\partial}{\partial\theta_1}[\frac{\partial f}{\partial\theta_3}]
\end{align}
$$
by equation (6.6)
$$
\begin{align}
	\tag{10.2}
	=\frac{\partial}{\partial\theta_1}[-\frac{\theta_4-\theta_1}{(1 + \bar{\rho})^{2}}\cdot \frac{\partial \bar{\rho}}{\partial \theta_3}]
\end{align}
$$
by similar logic shown in 9.2-9.3, we can rewrite constants
$$
\begin{align}
	\tag{10.2}
	=-\frac{1}{(1 + \bar{\rho})^{2}}\cdot \frac{\partial \bar{\rho}}{\partial \theta_3}\cdot\frac{\partial}{\partial\theta_1}[\theta_4-\theta_1]
\end{align}
$$
$$
\begin{align}
	\tag{10.3}
	= \frac{\partial\bar{\rho}}{\partial\theta_3}\cdot\frac{1}{(1+\bar{\rho})^2}
\end{align}
$$
proof
$$
\begin{align}
	\tag{11.1}
	\frac{\partial^2 f}{\partial\theta_1\partial\theta_4} = \frac{\partial}{\partial\theta_1}[\frac{\partial f}{\partial\theta_4}]
\end{align}
$$
by equation (7)
$$
\begin{align}
	\tag{11.2}
	= \frac{\partial}{\partial\theta_1}[\frac{1}{1 + \bar{\rho}}]
\end{align}
$$
Since $\theta_1$ isn't present, we are taking a derivative of a constant
$$
\begin{align}
	\tag{11.3}
	\frac{\partial^2 f}{\partial\theta_1\partial\theta_4} = 0
\end{align}
$$
proof
$$
\begin{align}
	\tag{12.1}
	\frac{\partial^2 f}{\partial \bar{\theta_2}^2}=\frac{\partial}{\partial \bar{\theta_2}}[\frac{\partial f}{\partial \bar{\theta_2}}]
\end{align}
$$
by equation (5)
$$
\begin{align}
	\tag{12.2}
	=\frac{\partial}{\partial\bar{\theta_2}}[\frac{\theta_4 - \theta_1}{(1 + \bar{\rho})^2}\cdot \ln(10)\cdot\bar{\rho}\cdot\theta_3]
\end{align}
$$
First, I will redistribute constants outside the derivative
$$
\begin{align}
	\tag{12.3}
	=(\theta_4-\theta_1)\cdot\ln(10)\cdot\theta_3\cdot\frac{\partial}{\partial\bar{\theta_2}}[\bar{\rho}\cdot(1+\bar{\rho})^{-2}]
\end{align}
$$
by the product rule
$$
\begin{align}
	\tag{12.4}
	=(\theta_4-\theta_1)\cdot\ln(10)\cdot\theta_3\cdot(\frac{\partial \bar{\rho}}{\partial\bar{\theta_2}}\cdot(1 + \bar{\rho})^{-2} + \bar{\rho}\cdot\frac{\partial}{\partial\bar{\theta_2}}[(1 + \bar{\rho})^{-2}])
\end{align}
$$
following the chain rule and power rule
$$
\begin{align}
	\tag{12.5}
	=(\theta_4-\theta_1)\cdot\ln(10)\cdot\theta_3\cdot(\frac{\partial \bar{\rho}}{\partial\bar{\theta_2}}\cdot\frac{1}{(1 + \bar{\rho})^{2}} - \frac{2\bar\rho}{(1+\bar\rho)^3}\cdot\frac{\partial \bar{\rho}}{\partial\bar{\theta_2}})
\end{align}
$$
We will then redistribute 
$$
\begin{align}
	\tag{12.6}
	=\frac{\theta_4-\theta_1}{(1 + \bar{\rho})^{2}}\cdot\frac{\partial \bar{\rho}}{\partial\bar{\theta_2}}\cdot\ln(10)\cdot\theta_3\cdot(1 - \frac{2\bar\rho}{1+\bar\rho})
\end{align}
$$
proof
$$
\begin{align}
	\tag{13.1}
	\frac{\partial^2 f}{\partial \bar{\theta_2}\partial\theta_3}=\frac{\partial}{\partial \bar{\theta_2}}[\frac{\partial f}{\partial \theta_3}]
\end{align}
$$
by equation (6)
$$
\begin{align}
	\tag{13.2}
	=\frac{\partial}{\partial \bar{\theta_2}}[-\frac{\theta_4 - \theta_1}{(1 + \bar{\rho})^2}\cdot  (x - \bar{\theta_2})\cdot\ln(10)\cdot\bar{\rho}]
\end{align}
$$
redistribute constants outside the derivative
$$
\begin{align}
	\tag{13.3}
	=-\ln(10)\cdot(\theta_4-\theta_1)\cdot\frac{\partial}{\partial \bar{\theta_2}}[(1 + \bar{\rho})^{-2}\cdot  (x - \bar{\theta_2})\cdot\bar{\rho}]
\end{align}
$$
using the product rule we receive
$$
\begin{align}
	\tag{13.4}
	=-\ln(10)\cdot(\theta_4-\theta_1)(\frac{\partial}{\partial \bar{\theta_2}}[(1 + \bar{\rho})^{-2}]\cdot(x - \bar{\theta_2})\cdot\bar{\rho} + \frac{\partial}{\partial \bar{\theta_2}}[x-\bar\theta_2]\cdot(1 + \bar{\rho})^{-2}\cdot\bar\rho + \frac{\partial\bar\rho}{\partial \bar{\theta_2}}\cdot(1 + \bar{\rho})^{-2}\cdot(x-\bar\theta_2))
\end{align}
$$
simplifying the derivations
$$
\begin{align}
	\tag{13.5}
	=-\ln(10)\cdot(\theta_4-\theta_1)(-\frac{2\bar\rho(x-\bar\theta_2)}{(1+\bar\rho)^3}\cdot\frac{\partial\bar\rho}{\partial\bar\theta_2}-\frac{\bar\rho}{(1+\bar\rho)^2} + \frac{\partial\bar\rho}{\partial \bar{\theta_2}}\cdot\frac{x-\bar\theta_2}{(1 + \bar{\rho})^{2}})
\end{align}
$$
In order to reduce further, we need to expand the $\frac{\partial\bar\rho}{\partial\bar\theta_2}$ term.
$$
\begin{align}
	\tag{13.6}
	=-\ln(10)\cdot(\theta_4-\theta_1)(-\frac{2\bar\rho(x-\bar\theta_2)}{(1+\bar\rho)^3}\cdot\frac{\partial\bar\rho}{\partial\bar\theta_2}-\frac{\bar\rho}{(1+\bar\rho)^2} -\ln(10)\cdot\bar{\rho}\cdot\theta_3\cdot\frac{x-\bar\theta_2}{(1 + \bar{\rho})^{2}})
\end{align}
$$
$$
\begin{align}
	\tag{13.6}
	=\bar\rho\cdot\ln(10)\cdot\frac{\theta_4-\theta_1}{(1+\bar\rho)^2}(\frac{2(x-\bar\theta_2)}{1+\bar\rho}\cdot\frac{\partial\bar\rho}{\partial\bar\theta_2}+1 +\ln(10)\cdot\theta_3\cdot (x-\bar\theta_2))
\end{align}
$$
proof
$$
\begin{align}
	\tag{14.1}
	\frac{\partial^2 f}{\partial \bar{\theta_2}\partial\theta_4}=\frac{\partial}{\partial \bar{\theta_2}}[\frac{\partial f}{\partial \theta_4}]
\end{align}
$$
by equation (7)
$$
\begin{align}
	\tag{14.2}
	= \frac{\partial}{\partial \bar{\theta_2}}[\frac{1}{1 + \bar{\rho}}]
\end{align}
$$
by the power rule
$$
\begin{align}
	\tag{14.3}
	= -\frac{1}{(1+\bar\rho)^2}\cdot\frac{\partial\bar\rho}{\partial\bar\theta_2}
\end{align}
$$
$$
\begin{align}
	\tag{14.4}
	=\frac{\bar\rho\cdot\theta_3\cdot\ln(10)}{(1+\bar\rho)^2}
\end{align}
$$
proof
$$
\begin{align}
	\tag{15.1}
	\frac{\partial^2 f}{\partial \theta_3^2}=\frac{\partial}{\partial \theta_3}[\frac{\partial f}{\partial \theta_3}]
\end{align}
$$
by equation (6)
$$
\begin{align}
	\tag{15.2}
	= \frac{\partial}{\partial \theta_3}[-\frac{\theta_4 - \theta_1}{(1 + \bar{\rho})^2}\cdot  (x - \bar{\theta_2})\cdot\ln(10)\cdot\bar{\rho}]
\end{align}
$$
redistribute constants
$$
\begin{align}
	\tag{15.3}
	= -(\theta_4 - \theta_1)\cdot(x - \bar{\theta_2})\cdot\ln(10)\cdot\frac{\partial}{\partial \theta_3}[(1 + \bar{\rho})^{-2}\cdot  \bar{\rho}]
\end{align}
$$
due to the product rule
$$
\begin{align}
	\tag{15.4}
	= -(\theta_4 - \theta_1)\cdot(x - \bar{\theta_2})\cdot\ln(10)\cdot(\bar\rho\cdot\frac{\partial}{\partial\theta_3}[(1+\bar\rho)^{-2}] + \frac{\partial\bar\rho}{\partial\theta_3}\cdot(1+\bar\rho)^{-2})
\end{align}
$$
$$
\begin{align}
	\tag{15.5}
	= -(\theta_4 - \theta_1)\cdot(x - \bar{\theta_2})\cdot\ln(10)\cdot(-\frac{2\bar\rho}{(1+\bar\rho)^3}\cdot\frac{\partial\bar\rho}{\partial\theta_3} + \frac{\partial\bar\rho}{\partial\theta_3}\cdot\frac{1}{(1+\bar\rho)^2})
\end{align}
$$
redistributing once more
$$
\begin{align}
	\tag{15.6}
	= -\frac{\theta_4 - \theta_1}{(1+\bar\rho)^2}\cdot(x - \bar{\theta_2})\cdot\ln(10)\cdot\frac{\partial\bar\rho}{\partial\theta_3}\cdot(1 - \frac{2\bar\rho}{1+\bar\rho})
\end{align}
$$
proof
$$
\begin{align}
	\tag{16.1}
	\frac{\partial^2 f}{\partial \theta_3\partial\theta_4}=\frac{\partial}{\partial \theta_3}[\frac{\partial f}{\partial \theta_4}]
\end{align}
$$
by equation (7)
$$
\begin{align}
	\tag{16.2}
	= \frac{\partial}{\partial \theta_3}[\frac{1}{1 + \bar{\rho}}]
\end{align}
$$
By the power rule and chain rule
$$
\begin{align}
	\tag{16.3}
	= \frac{1}{(1+\bar\rho)^2}\frac{\partial\bar\rho}{\partial \theta_3}
\end{align}
$$
$$
\begin{align}
	\tag{16.4}
	= - \frac{(x - \bar\theta_2)\cdot\ln(10)\cdot\bar\rho}{(1+\bar\rho)^2}
\end{align}
$$
proof
$$
\begin{align}
	\tag{16.1}
	\frac{\partial^2 f}{\partial \theta_4^2}=\frac{\partial}{\partial \theta_4}[\frac{\partial f}{\partial \theta_4}]
\end{align}
$$
by equation (7)
$$
\begin{align}
	\tag{16.2}
	= \frac{\partial}{\partial \theta_4}[\frac{1}{1 + \bar{\rho}}]
\end{align}
$$
Since there is no $\theta_4$, the terms are treated as constants
$$
\begin{align}
	\tag{16.3}
	= 0
\end{align}
$$
proof
$$
\begin{align}
	\tag{17.1}
	\frac{\partial^2 f}{\partial \theta_j\partial\theta_2} = \frac{\partial}{\partial \theta_j}[\frac{\partial f}{\partial \theta_2}]
\end{align}
$$
by equation (8.1) 
$$
\begin{align}
	\tag{17.2}
	= \frac{\partial}{\partial \theta_j}[\frac{\partial f}{\partial \bar{\theta_2}}\cdot\frac{\partial \bar{\theta_2}}{\partial \theta_2}]
\end{align}
$$
by equation (8.1.1)
$$
\begin{align}
	\tag{17.3}
	= \frac{\partial}{\partial \theta_j}[\frac{\partial f}{\partial \bar{\theta_2}}\cdot\frac{1}{\theta_2\ln(10)}]
\end{align}
$$
As long as $\theta_j$ is not $\theta_2$, then we can treat $\frac{1}{\theta_2\ln(10)}$ as a constant. Since we have the solution for of $\frac{\partial}{\partial \theta_j}[\frac{\partial f}{\partial \bar{\theta_2}}]$ for when $j = \langle 1,3,4\rangle$ in equations (9), (13) and (14) respectively, The proof ends here.
proof
$$
\begin{align}
	\tag{18.1}
	\frac{\partial^2 f}{\partial \theta_2^2}=\frac{\partial}{\partial \theta_2}[\frac{\partial f}{\partial \theta_2}]
\end{align}
$$
by equation (8)
$$
\begin{align}
	\tag{18.2}
	=\frac{\partial}{\partial\theta_2}[\frac{\theta_3}{\theta_2}\cdot\frac{\theta_4 - \theta_1}{(1 + \rho)^2}\cdot \rho]
\end{align}
$$
redistribute constants
$$
\begin{align}
	\tag{18.3}
	=\theta_3\cdot(\theta_4-\theta_1)\cdot\frac{\partial}{\partial\theta_2}[\frac{1}{\theta_2}\cdot\frac{1}{(1 + \rho)^2}\cdot \rho]
\end{align}
$$
by the product rule
$$
\begin{align}
	\tag{18.4}
	=\theta_3\cdot(\theta_4-\theta_1)\cdot(\frac{\partial}{\partial\theta_2}[\frac{1}{\theta_2}]\cdot\frac{\rho}{(1 + \rho)^2} + \frac{\partial}{\partial\theta_2}[\rho]\cdot\frac{1}{\theta_2\cdot(1+\rho)^2} +\frac{\partial}{\partial\theta_2}[\frac{1}{(1+\rho)^2}]\cdot\frac{\rho}{\theta_2})
\end{align}
$$
$$
\begin{align}
	\tag{18.5}
	=\theta_3\cdot(\theta_4-\theta_1)\cdot(-\frac{\rho}{\theta_2^2\cdot(1 + \rho)^2} + \frac{\partial\rho}{\partial\theta_2}\cdot\frac{1}{\theta_2\cdot(1+\rho)^2} -\frac{2}{(1+\rho)^3}\cdot\frac{\rho}{\theta_2}\cdot\frac{\partial\rho}{\partial\theta_2})
\end{align}
$$
given that
$$
\begin{align}
  \frac{\partial\rho}{\partial\theta_2} = -\frac{\theta_3}{\theta_2}\cdot \rho
\end{align}
$$
then
$$
\begin{align}
	\tag{18.6}
	=\theta_3\cdot(\theta_4-\theta_1)\cdot(-\frac{\rho}{\theta_2^2\cdot(1 + \rho)^2} -\frac{\theta_3\cdot\rho}{\theta_2^2\cdot(1+\rho)^2} +\frac{2\cdot\theta_3\cdot\rho^2}{\theta_2^2\cdot(1+\rho)^3})
\end{align}
$$
$$
\begin{align}
	\tag{18.7}
	=-\frac{\rho\cdot\theta_3\cdot(\theta_4-\theta_1)}{\theta_2^2\cdot(1 + \rho)^2}\cdot(1 +\theta_3 -\frac{2\cdot\theta_3\cdot\rho}{1+\rho})
\end{align}
$$