Type: | Package |
Title: | Analysis of Variance and Other Important Complementary Analyses |
Version: | 11.0 |
Date: | 2024-09-14 |
Maintainer: | Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br> |
Description: | Perform analysis of variance and other important complementary analyses. The functions are easy to use. Performs analysis in various designs, with balanced and unbalanced data. |
Depends: | R (≥ 3.0.0) |
Imports: | nlme |
License: | GPL-2 |
NeedsCompilation: | no |
Packaged: | 2024-09-16 12:33:29 UTC; emmanuel |
Repository: | CRAN |
Author: | Emmanuel Arnhold [aut, cre] |
Date/Publication: | 2024-09-16 13:10:02 UTC |
Analysis of Variance and Other Important Complementary Analyzes
Description
Perform analysis of variance and other important complementary analyzes. The functions are easy to use. Performs analysis in various designs, with balanced and unbalanced data.
Details
Package: | easyanova |
Type: | Package |
Version: | 11.0 |
Date: | 2024-09-14 |
License: | GPL-2 |
Author(s)
Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>
References
CRUZ, C.D. and CARNEIRO, P.C.S. Modelos biometricos aplicados ao melhoramento genetico. 2nd Edition. Vicosa, UFV, v.2, 2006. 585p.
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
SAMPAIO, I. B. M. Estatistica aplicada a experimentacao animal. 3nd Edition. Belo Horizonte: Editora FEPMVZ, Fundacao de Ensino e Pesquisa em Medicina Veterinaria e Zootecnia, 2010. 264p.
SANDERS W.L. and GAYNOR, P.J. Analysis of switchback data using Statistical Analysis System, Inc. Software. Journal of Dairy Science, 70.2186-2191. 1987.
PIMENTEL-GOMES, F. and GARCIA C.H. Estatistica aplicada a experimentos agronomicos e florestais: exposicao com exemplos e orientacoes para uso de aplicativos. Editora Fealq, v.11, 2002. 309p.
RAMALHO, M. A. P.; FERREIRA, D. F. and OLIVEIRA, A. C. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA, 2005, 322p.
See Also
ea1, ea2, ec
Examples
# Kaps and Lamberson(2009)
data(data1)
data(data2)
data(data3)
data(data4)
# analysis in completely randomized design
r1<-ea1(data1, design=1)
names(r1)
r1
# analysis in randomized block design
r2<-ea1(data2, design=2)
# analysis in latin square design
r3<-ea1(data3, design=3)
# analysis in several latin squares design
r4<-ea1(data4, design=4)
r1[1]
r2[1]
r3[1]
r4[1]
# analysis in unbalanced randomized block design
response<-ifelse(data2$Gain>850, NA, data2$Gain)
ndata<-data.frame(data2[-3],response)
ndata
r5<-ea1(ndata, design=2 )
r5
# multivariable response (list argument = TRUE)
t<-c('a','a','a','b','b','b','c','c','c')
r1<-c(10,12,12.8,4,6,8,14,15,16)
r2<-c(102,105,106,125,123,124,99,95,96)
r3<-c(560,589,590,658,678,629,369,389,378)
d<-data.frame(t,r1,r2,r3)
results=ea1(d, design=1, list=TRUE)
names(results)
results
results[1][[1]]
names(results[1][[1]])
Box plot
Description
Plot quartis
Usage
box.plot(data,test=1, xlab=NULL, ylab=NULL,legend=TRUE,
letters=TRUE, family="Times", bg="white", cex.axis=0.7,...)
Arguments
data |
data.frame with data (see examples) |
test |
type of test 1 = Kruskall-Wallis 2 = Friedman |
xlab |
name of x-axis |
ylab |
name of y-axis |
legend |
TRUE = plot p-value of test FALSE = not plot p-value |
letters |
TRUE = plot letters FALSE = not plot letters |
family |
font of plot |
bg |
background color |
cex.axis |
font size in the axis |
... |
more plot parameters |
Value
Returns box plots and test of Kruskall-Wallis and Friedman
Author(s)
Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
See Also
ea1,ea2, means.plot
Examples
#data3: Kaps and Lamberson (2009)
#Description:
##The experiment compared three diets for pigs in a completely randomized design
data(data1)
# Kruskal-Wallis test
box.plot(data1, test=1)
#Description
#Complete randomized block design to determine the average daily gain of steers
data(data2)
box.plot(data2, test=2)
#More plot parameters
box.plot(data2, test=2, col=c(2,7,3), col.axis="red",las=1,
legend=FALSE, bg="cornsilk", sub="Treatments", cex=1.2);grid(10, lwd=1.5)
data1: Kaps and Lamberson(2009): page 252
Description
The experiment compared three diets for pigs in a completely randomized design
Usage
data(data1)
Format
A data frame with 15 observations on the following 2 variables.
Diet
a factor with levels
d1
d2
d3
Gain
a numeric vector
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
Examples
data(data1)
summary(data1)
data10: Kaps and Lamberson (2009): page 395
Description
Completely randomized design with a covariate.The effect of three diets on daily gain of steers was investigated. The design was a completely randomized design. Weight at the beginning of the experiment (initial weight) was recorded, but not used in the assignment of animals to diet.
Usage
data(data10)
Format
A data frame with 15 observations on the following 4 variables.
Diets
a factor with levels
A
B
C
Initial_weight
a numeric vector
Repetitions
a numeric vector
Gain
a numeric vector
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
Examples
data(data10)
summary(data10)
data11: Pimentel Gomes and Garcia (2002): page 199
Description
Incomplete block design
Usage
data(data11)
Format
A data frame with 56 observations on the following 4 variables.
treatments
a numeric vector
rep
a numeric vector
blocks
a numeric vector
yield
a numeric vector
References
PIMENTEL-GOMES, F. and GARCIA C.H. Estatistica aplicada a experimentos agronomicos e florestais: exposicao com exemplos e orientacoes para uso de aplicativos. Editora Fealq, v.11, 2002. 309p.
Examples
data(data11)
summary(data11)
data12: Pimentel Gomes and Garcia (2002): page 202
Description
Incomplete block design
Usage
data(data12)
Format
A data frame with 42 observations on the following 4 variables.
treatments
a numeric vector
rep
a numeric vector
blocks
a numeric vector
yield
a numeric vector
References
PIMENTEL-GOMES, F. and GARCIA C.H. Estatistica aplicada a experimentos agronomicos e florestais: exposicao com exemplos e orientacoes para uso de aplicativos. Editora Fealq, v.11, 2002. 309p.
Examples
data(data12)
summary(data12)
data13: Cruz and Carneiro (2006): page 575
Description
Incomplete block design
Usage
data(data13)
Format
A data frame with 23 observations on the following 3 variables.
genotypes
a factor with levels
f1
f10
f11
f12
f13
f14
f2
f3
f4
f5
f6
f7
f8
f9
test1
test2
test3
blocks
a factor with levels
b1
b2
b3
yield
a numeric vector
References
CRUZ, C.D. and CARNEIRO, P.C.S. Modelos biometricos aplicados ao melhoramento genetico. 2nd Edition. Vicosa, UFV, v.2, 2006. 585p.
Examples
data(data13)
summary(data13)
data14: Sampaio (2009): page173
Description
Incomplete block design in animals
Usage
data(data14)
Format
A data frame with 28 observations on the following 4 variables.
treatment
a factor with levels
A
B
C
D
E
F
G
animal
a factor with levels
A1
A2
A3
A4
A5
A6
A7
period
a factor with levels
P1
P2
P3
P4
response
a numeric vector
References
SAMPAIO, I. B. M. Estatistica aplicada a experimentacao animal. 3nd Edition. Belo Horizonte: Editora FEPMVZ, Fundacao de Ensino e Pesquisa em Medicina Veterinaria e Zootecnia, 2010. 264p.
Examples
data(data14)
summary(data14)
data15: Pimentel Gomes and Garcia (2002): page 211
Description
Lattice design
Usage
data(data15)
Format
A data frame with 48 observations on the following 4 variables.
treatments
a numeric vector
rep
a numeric vector
blocks
a numeric vector
yield
a numeric vector
References
PIMENTEL-GOMES, F. and GARCIA C.H. Estatistica aplicada a experimentos agronomicos e florestais: exposicao com exemplos e orientacoes para uso de aplicativos. Editora Fealq, v.11, 2002. 309p.
Examples
data(data15)
summary(data15)
data16: Sampaio (2010): page164
Description
Switchback design
Usage
data(data16)
Format
A data frame with 36 observations on the following 4 variables.
treatment
a factor with levels
A
B
C
period
a numeric vector
animal
a numeric vector
gain
a numeric vector
References
SAMPAIO, I. B. M. Estatistica aplicada a experimentacao animal. 3nd Edition. Belo Horizonte: Editora FEPMVZ, Fundacao de Ensino e Pesquisa em Medicina Veterinaria e Zootecnia, 2010. 264p.
Examples
data(data16)
summary(data16)
data17: Sanders and Gaynor (1987)
Description
Switchback design
Usage
data(data17)
Format
A data frame with 36 observations on the following 5 variables.
treatments
a numeric vector
blocks
a factor with levels
b1
b2
b3
period
a numeric vector
animal
a numeric vector
gain
a numeric vector
References
SANDERS W.L. and GAYNOR, P.J. Analysis of switchback data using Statistical Analysis System, Inc. Software. Journal of Dairy Science, 70.2186-2191. 1987.
Examples
data(data17)
summary(data17)
data18: Ramalho et al. (2005): page 115
Description
Repetition of experiments in block design
Usage
data(data18)
Format
A data frame with 60 observations on the following 4 variables.
treatments
a numeric vector
experiments
a numeric vector
blocks
a numeric vector
response
a numeric vector
References
RAMALHO, M. A. P.; FERREIRA, D. F. and OLIVEIRA, A. C. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA, 2005, 322p.
Examples
data(data18)
summary(data18)
data19: Sampaio (2010): page 155
Description
Repetition of latin square design
Usage
data(data19)
Format
A data frame with 32 observations on the following 5 variables.
treatments
a factor with levels
A
B
C
D
squares
a factor with levels
1
2
rows
a factor with levels
1
2
3
4
columns
a factor with levels
1
2
3
4
response
a numeric vector
References
SAMPAIO, I. B. M. Estatistica aplicada a experimentacao animal. 3nd Edition. Belo Horizonte: Editora FEPMVZ, Fundacao de Ensino e Pesquisa em Medicina Veterinaria e Zootecnia, 2010. 264p.
Examples
data(data19)
summary(data19)
data2: Kaps and Lamberson (2009): page 313: randomizad block design
Description
Complete randomized block design to determine the average daily gain of steers
Usage
data(data2)
Format
A data frame with 12 observations on the following 3 variables.
Treatments
a factor with levels
t1
t2
t3
Blocks
a factor with levels
b1
b2
b3
b4
Gain
a numeric vector
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
Examples
data(data2)
summary(data2)
data3: Kaps and Lamberson (2009): page 347
Description
Latin square design for test four different treatments on hay intake of fattening steers
Usage
data(data3)
Format
A data frame with 16 observations on the following 4 variables.
treatment
a factor with levels
A
B
C
D
period
a factor with levels
p1
p2
p3
p4
steer
a factor with levels
a1
a2
a3
a4
response
a numeric vector
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
Examples
data(data3)
summary(data3)
data4: Kaps and Lamberson (2009): page 349
Description
Two latin squares design for test four different treatments on hay intake of fattening steers
Usage
data(data4)
Format
A data frame with 32 observations on the following 5 variables.
diet
a factor with levels
A
B
C
D
square
a numeric vector
steer
a numeric vector
period
a numeric vector
response
a numeric vector
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
Examples
data(data4)
summary(data4)
data5: Kaps and Lamberson (2009): page 361
Description
Factorial in randomized design for testing two vitamins in feed of pigs
Usage
data(data5)
Format
A data frame with 20 observations on the following 3 variables.
Vitamin_1
a numeric vector
Vitamin_2
a numeric vector
Gains
a numeric vector
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
Examples
data(data5)
summary(data5)
data6: Pimentel Gomes and Garcia (2002): page 127
Description
Factorial in randomized block design
Usage
data(data6)
Format
A data frame with 16 observations on the following 4 variables.
factor1
a numeric vector
factor2
a numeric vector
block
a numeric vector
yield
a numeric vector
References
PIMENTEL-GOMES, F. and GARCIA C.H. Estatistica aplicada a experimentos agronomicos e florestais: exposicao com exemplos e orientacoes para uso de aplicativos. Editora Fealq, v.11, 2002. 309p.
Examples
data(data6)
summary(data6)
data7: Kaps and Lamberson (2009): page 409
Description
The aim of this experiment was to test the difference between two treatments on gain of kids. A sample of 18 kids was chosen, nine for each treatment. One kid in treatment 1 was removed from the experiment due to illness. The experiment began at the age of 8 weeks. Weekly gain was measured at ages 9, 10, 11 and 12 weeks.
Usage
data(data7)
Format
A data frame with 68 observations on the following 4 variables.
treatment
a character vector
rep
a numeric vector
week
a character vector
gain
a numeric vector
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
Examples
data(data7)
summary(data7)
data8: Kaps and Lamberson (2009): page 386
Description
Split-plot Design. Main Plots in Randomized Blocks. An experiment was conducted in order to investigate four different treatments of pasture and two mineral supplements on milk yield. The total number of cows available was 24. The experiment was designed as a split-plot, with pasture treatments (factor A) assigned to the main plots and mineral supplements (factor B) assigned to split-plots. The experiment was replicated in three blocks.
Usage
data(data8)
Format
A data frame with 24 observations on the following 4 variables.
pasture
a factor with levels
p1
p2
p3
p4
block
a numeric vector
mineral
a factor with levels
m1
m2
milk
a numeric vector
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
Examples
data(data8)
summary(data8)
data9: Sampaio (2010): page 67
Description
Factorial design to evaluate egg quality according to the lineage of chicken, packaging and storage time.
Usage
data(data9)
Format
A data frame with 120 observations on the following 5 variables.
lineage
a factor with levels
A
B
packing
a factor with levels
Ce
Co
S
time
a numeric vector
repetitions
a numeric vector
response
a numeric vector
References
SAMPAIO, I. B. M. Estatistica aplicada a experimentacao animal. 3nd Edition. Belo Horizonte: Editora FEPMVZ, Fundacao de Ensino e Pesquisa em Medicina Veterinaria e Zootecnia, 2010. 264p.
Examples
data(data9)
summary(data9)
Analysis of variance in simple designs
Description
Perform analysis of variance and other important complementary analyzes. The function are easy to use. Performs analysis in various simples designs, with balanced and unbalanced data. Too performs analysis the kruskal-Wallis and Friedman (designs 14 and 15).
Usage
ea1(data, design = 1, alpha = 0.05, list = FALSE, p.adjust=1, plot=2)
Arguments
data |
data is a data.frame see how the input data in the examples |
design |
1 = completely randomized design 2 = randomized block design 3 = latin square design 4 = several latin squares 5 = analysis with a covariate (completely randomized design) 6 = analysis with a covariate (randomized block design) 7 = incomplete blocks type I and II 8 = incomplete blocks type III or augmented blocks 9 = incomplete blocks type III in animal experiments 10 = lattice (intra-block analysis) 11 = lattice (inter-block analysis) 12 = switchback design 13 = switchback design in blocks 14 = Kruskal-Wallis rank sum test 15 = Friedman rank sum test |
alpha |
significance level for multiple comparisons |
list |
FALSE = a single response variable TRUE = multivariable response |
p.adjust |
1="none"; 2="holm"; 3="hochberg"; 4="hommel"; 5="bonferroni"; 6="BH", 7="BY"; 8="fdr"; for more details see function "p.adjust" |
plot |
1 = box plot for residuals; 2 = standardized residuals vs sequence data; 3 = standardized residuals vs theoretical quantiles |
Details
The response variable must be numeric. Other variables can be numeric or factors.
Value
Returns analysis of variance, means (adjusted means), multiple comparison test (tukey, snk, duncan, t and scott knott) and residual analysis. Too returns analysis the kruskal-Wallis and Friedman (designs 14 and 15).
Author(s)
Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>
References
CRUZ, C.D. and CARNEIRO, P.C.S. Modelos biometricos aplicados ao melhoramento genetico. 2nd Edition. Vicosa, UFV, v.2, 2006. 585p.
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
SAMPAIO, I. B. M. Estatistica aplicada a experimentacao animal. 3nd Edition. Belo Horizonte: Editora FEPMVZ, Fundacao de Ensino e Pesquisa em Medicina Veterinaria e Zootecnia, 2010. 264p.
SANDERS W.L. and GAYNOR, P.J. Analysis of switchback data using Statistical Analysis System, Inc. Software. Journal of Dairy Science, 70.2186-2191. 1987.
PIMENTEL-GOMES, F. and GARCIA C.H. Estatistica aplicada a experimentos agronomicos e florestais: exposicao com exemplos e orientacoes para uso de aplicativos. Editora Fealq, v.11, 2002. 309p.
See Also
ea2, ec
Examples
# Kaps and Lamberson(2009)
data(data1)
data(data2)
data(data3)
data(data4)
# analysis in completely randomized design
r1<-ea1(data1, design=1)
names(r1)
r1
# analysis in randomized block design
r2<-ea1(data2, design=2)
# analysis in latin square design
r3<-ea1(data3, design=3)
# analysis in several latin squares design
r4<-ea1(data4, design=4)
r1[1]
r2[1]
r3[1]
r4[1]
# analysis in unbalanced randomized block design
response<-ifelse(data2$Gain>850, NA, data2$Gain)
ndata<-data.frame(data2[-3],response)
ndata
r5<-ea1(ndata, design=2 )
r5
# multivariable response (list argument = TRUE)
t<-c('a','a','a','b','b','b','c','c','c')
r1<-c(10,12,12.8,4,6,8,14,15,16)
r2<-c(102,105,106,125,123,124,99,95,96)
r3<-c(560,589,590,658,678,629,369,389,378)
d<-data.frame(t,r1,r2,r3)
results=ea1(d, design=1, list=TRUE)
names(results)
results
results[1][[1]]
names(results[1][[1]])
# analysis with a covariate
# Kaps and Lamberson (2009)
data(data10)
# analysis in completely randomized design
r6<-ea1(data10[-3], design=5)
r6
# incomplete blocks type I and II
# Pimentel Gomes and Garcia (2002)
data(data11)
data(data12)
r7<-ea1(data11,design=7)
r8<-ea1(data12,design=7)
r7;r8
# incomplete blocks type III or augmented blocks
# Cruz and Carneiro (2006)
data(data13)
r9<-ea1(data13, design=8)
r9
# incomplete blocks type III in animal experiments
# Sampaio (2010)
data(data14)
r10<-ea1(data14, design=9)
r10
# lattice
# Pimentel Gomes and Garcia (2002)
data(data15)
r11<-ea1(data15, design=10) # intra-block analysis
r12<-ea1(data15, design=11) # inter-block analysis
r11
r12
# switchback design
# Sampaio (2010)
data(data16)
r13<-ea1(data16, design=12)
r13
# switchback design in blocks
# Sanders and Gaynor (1987)
data(data17)
r14<-ea1(data17, design=13)
r14
#Kruskal-Wallis Rank Sum Test
r15<-ea1(data1, design=14)
r15
#Friedman Rank Sum Test
r16<-ea1(data2, design=15)
r16
# Graeco-Latin Square
#latin letters
treatment=c("A","B","C","D","E","B","C","D","E","A","C",
"D","E","A","B","D","E","A","B","C","E","A","B","C","D")
##blocked factors
#greek letters
block=c(1,2,3,4,5,3,4,5,1,2,5,1,2,3,4,2,3,4,5,1,4,5,1,2,3)
# rowns
rows=rep(1:5,5)
#coluns
columns=rep(1:5, each=5)
#variable
response=c(-1,-8,-7,1,-3,-5,-1,13,6,5,-6,5,1,1,-5,-1,2,2,-2,4,-1,11,-4,-3,6)
# table
data=data.frame(treatment, block, rows, columns, response)
r16=ea1(data, design=16)
r16
### Repetitions of Graeco-Latin Square
#latin letters
treatment=c("A","B","C","D","E","B","C","D","E",
"A","C","D","E","A","B","D","E","A","B","C","E","A","B","C","D",
"A","B","C","D","E","B","C","D","E","A","C","D",
"E","A","B","D","E","A","B","C","E","A","B","C","D")
#squares
squares=rep(1:2,25)
##blocked factors
#greek letters
block=c(1,2,3,4,5,3,4,5,1,2,5,1,2,3,4,2,3,4,5,1,4,5,1,2,3,
1,2,3,4,5,3,4,5,1,2,5,1,2,3,4,2,3,4,5,1,4,5,1,2,3)
# rowns
rows=c(rep(1:5,5),rep(1:5,5))
#coluns
columns=c(rep(1:5, each=5),rep(1:5, each=5))
#variable
response=c(-1,-8,-7,1,-3,-5,-1,13,6,5,-6,5,1,1,-5,-1,2,2,-2,4,-1,11,-4,-3,6,
-2,-9,-8,1,-2,-5,-1,9,6,5,-5,2,3,1,-7,-1,2,4,-1,2,-2,15,-5,-1,7)
# table
data=data.frame(treatment, squares, block, rows, columns, response)
r17=ea1(data, design=17)
r17
Analysis of variance in factorial and split plot
Description
Perform analysis of variance and other important complementary analyzes in factorial and split plot scheme, with balanced and unbalanced data.
Usage
ea2(data, design = 1, alpha = 0.05, cov = 4, list = FALSE, p.adjust=1, plot=2)
Arguments
data |
data is a data.frame see how the input data in the examples |
design |
1 = double factorial in completely randomized design 2 = double factorial in randomized block design 3 = double factorial in latin square design 4 = split plot in completely randomized design 5 = split plot in randomized block design 6 = split plot in latin square design 7 = triple factorial in completely randomized design 8 = triple factorial in randomized block design 9 = double factorial in split plot (completely randomized) 10 = double factorial in split plot (randomized in block) 11 = joint analysis of experiments with hierarchical blocks 12 = joint analysis of repetitions of latin squares (hierarchical rows) 13 = joint analysis of repetitions of latin squares (hierarchical rows and columns) |
alpha |
significance level for multiple comparisons |
cov |
for split plot designs 1 = Autoregressive 2 = Heterogenius Autoregressive 3 = Continuous Autoregressive Process 4 = Compound Symetry 5 = Unstructured |
list |
FALSE = a single response variable TRUE = multivariable response |
p.adjust |
1="none"; 2="holm"; 3="hochberg"; 4="hommel"; 5="bonferroni"; 6="BH", 7="BY"; 8="fdr"; for more details see function "p.adjust" |
plot |
1 = box plot for residuals; 2 = standardized residuals vs sequence data; 3 = standardized residuals vs theoretical quantiles |
Details
The response variable must be numeric. Other variables can be numeric or factors.
Value
Returns analysis of variance, means (adjusted means), multiple comparison test (tukey, snk, duncan, t and scott knott) and residual analysis.
Author(s)
Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
SAMPAIO, I. B. M. Estatistica aplicada a experimentacao animal. 3nd Edition. Belo Horizonte: Editora FEPMVZ, Fundacao de Ensino e Pesquisa em Medicina Veterinaria e Zootecnia, 2010. 264p.
PIMENTEL-GOMES, F. and GARCIA C.H. Estatistica aplicada a experimentos agronomicos e florestais: exposicao com exemplos e orientacoes para uso de aplicativos. Editora Fealq, v.11, 2002. 309p.
RAMALHO, M. A. P.; FERREIRA, D. F. and OLIVEIRA, A. C. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA, 2005, 322p.
See Also
ea1, ec
Examples
# double factorial
# completely randomized design
data(data5)
r1=ea2(data5, design=1)
r1
# randomized block design
# data(data6)
# r2=ea2(data6, design=2)
# r2
# names(r1)
# names(r2)
# triple factorial
# completely randomized design
# data(data9)
# r3=ea2(data9[,-4], design=7)
# r3[1]
# split plot
# completely randomized design
# data(data7)
# r4=ea2(data7, design=4)
# r4
# randomized block design
# data(data8)
# r5=ea2(data8, design=5)
# r5
# hierarchical blocks
# Ramalho et al. (2005)
# data(data18)
# data18
# r6=ea2(data18, design=11)
# r6
# hierarchical latin squares
# Sampaio (2010)
# data(data19)
# data19
# r7=ea2(data19, design=12)
# r8=ea2(data19, design=13)
# hierarchical rows
# r7
# hierarchical rows and columns
# r8
#split.plot in latin square
#data(data3)
#d=rbind(data3,data3)
#d=data3[,-4];d=data.frame(d,time=rep(1:2,each=16),response=rnorm(32,45,4))
# r9=ea2(d,design=6)
# r9
Easy contrast
Description
Performs contrasts of means
Usage
ec(mg1, mg2, sdg1, sdg2, df)
Arguments
mg1 |
Means of the group 1 |
mg2 |
Means of the group 2 |
sdg1 |
Standard error of the group 1 |
sdg2 |
Standard error of the group 2 |
df |
Degree of freedom from error |
Value
Returns t test for contrast
Author(s)
Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
See Also
ea1,ea2
Examples
# Kaps and Lamberson(2009, pg 254)
data(data1)
r<-ea1(data1, design=1)
r[2]
# first contrast
mg1=312;mg2=c(278,280); sdg1=7.7028;sdg2=c(7.7028,7.7028); df=12
ec(mg1,mg2,sdg1,sdg2,df)
# second contrast
mg1=280;mg2=278; sdg1=7.7028;sdg2=7.7028; df=12
ec(mg1,mg2,sdg1,sdg2,df)
Confidence intervals of contrasts
Description
Estimate of confidence intervals of the contrasts
Usage
ic(data, test=1, df=10, alpha=0.05)
Arguments
data |
output object of ea1 or ea2 function (see examples) |
test |
Letters of the post-hoc test 1=Tukey 2=SNK 3=Duncan 4=t 5=Scott-Knott |
df |
degree of freedom of residuals in anova |
alpha |
significance level |
Value
Returns confidence intervals of the contrasts
Author(s)
Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
See Also
ea1,ea2, box.plot, means.plot, means.plotfat, ic.plot, p.plot
Examples
#data3: Kaps and Lamberson (2009): page 347
#Description:
##Latin square design for test four different treatments on hay intake of fattening steers
data(data3)
r<-ea1(data3, design=3)
#plot
#means
means=r[[2]]
means
ic(means, test=1, df=6) # tukey
# alpha = 0.10
ic(r[[2]], test=1, df=6, alpha=0.10)
# split plot
data('data7')
r<-ea2(data7,4)
#plot
ic(r[2], df=15)
#split.plot
ic(r[4], df=45)
Plot confidence intervals of contrasts
Description
Plot confidence intervals of contrasts
Usage
ic.plot(data,col="dark green", cex=0.5, xlab="constrats",
pch=19,family="Times", bg="white",...)
Arguments
data |
output object of ic (see examples) |
col |
colours of lines |
cex |
size of points |
xlab |
title of x-axis |
pch |
type of points |
family |
font of plot |
bg |
background color |
... |
more plot parameters |
Value
Plot confidence intervals of contrasts
Author(s)
Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
See Also
ea1,ea2, box.plot, means.plot, means.plotfat, ic.plot, p.plot
Examples
#data3: Kaps and Lamberson (2009): page 347
#Description:
##Latin square design for test four different treatments on hay intake of fattening steers
data(data3)
r<-ea1(data3, design=3)
#plot
#means
means=r[[2]]
means
ic(means, test=1, df=6) # tukey
#intervals
conf=ic(means, test=1, df=6)
#plot intervals
ic.plot(conf)
#more plot parameters
ic.plot(conf, las=2, bg="cornsilk");grid(10)
Plot Means
Description
Plot contrasts of means
Usage
m.plot(data, s="sd",test="tukey", family="Times", bg="white", cex.text=0.7,
cex=0.5,bar.order=2, decreasing=TRUE, xlab="treatments", ylab="",pch=19, ...)
Arguments
data |
output object of ea1 or ea2 function (see examples) |
s |
s="sd" (defalt) plot standard deviation s="sem" plot standard error of mean |
test |
Letters of the post-hoc test test="tukey" (default) test="snk" test="duncan" test="t" test="scott_knott" |
family |
font of plot |
bg |
background color |
cex.text |
font size in letters and means |
cex |
font size in points |
bar.order |
order of bar or means 1 = order of treatments names 2 = order of the means (default) |
decreasing |
decreasing bar order (TRUE or FALSE) |
xlab |
title of x-axis |
ylab |
title of y-axis |
pch |
type of points |
... |
more plot parameters |
Value
Returns plots of means
Author(s)
Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
See Also
ea1,ea2, box.plot, means.plot, means.plotfat, ic, ic.plot, p.plot
Examples
#data3: Kaps and Lamberson (2009): page 347
#Description:
##Latin square design for test four different treatments on hay intake of fattening steers
data(data3)
r<-ea1(data3, design=3)
#plot
#means
means=r[[2]]
means
m.plot(means, col=gray.colors(4))
#direct
m.plot(r[[2]], col=gray.colors(4))
# more graphical parameters
m.plot(means, col=c(2,7,3,5), bg="white", las=1, cex.text=1,main="Tukey (0.05)",
family="sans", bar.order=2, decreasing=FALSE);grid(10)
data('data7')
r<-ea2(data7,4)
m.plot(r[[4]], col=c(2,7,3,5), las=1, bg="cornsilk");grid(10)
par(mfrow=c(1,2))
m.plot(r[[8]][1], test="scott_knott",xlab="treatment 1",col=c(2,7,3,5),
las=2, bg="cornsilk",bar.order=2, decreasing=FALSE);grid(10)
m.plot(r[[8]][2], test="scott_knott",xlab="treatment 2", col=c(2,7,3,5),
las=2, bg="cornsilk", bar.order=2, decreasing=FALSE);grid(10)
Plot Means
Description
Plot contrasts of means
Usage
means.plot(data, plot=1, s=1,test=1, legend=TRUE, letters=TRUE,
family="Times", bg="white",cex.names=0.8, cex.text=0.7, cex.legend=1,
bar.order=2, decreasing=TRUE, alpha=0.05,cex=0.5, pch=19, ...)
Arguments
data |
output object of ea1 function (see examples) |
plot |
type of plot 1 = bar plot (default) 2 = means plot 3 = confidence interval of the contrasts |
s |
s=1 (defalt) plot standard deviation s=2 plot standard error of mean |
test |
Letters of the post-hoc test 1=Tukey 2=SNK 3=Duncan 4=t 5=Scott-Knott |
legend |
TRUE = plot p-value of F test FALSE = not plot p-value |
letters |
TRUE = plot letters FALSE = not plot letters |
family |
font of plot |
bg |
background color |
cex.names |
font size in names of treatments (x-axis) |
cex.text |
font size in letters and means |
cex.legend |
font size in legend |
bar.order |
order of bar or means 1 = order of treatments names 2 = order of the means (default) |
decreasing |
decreasing bar order (TRUE or FALSE) |
alpha |
0.05 (default) is the alpha of confidence intervals |
cex |
size of points |
pch |
type of points |
... |
more plot parameters |
Value
Returns plots and confidence intervals
Author(s)
Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
See Also
ea1,ea2
Examples
#data3: Kaps and Lamberson (2009): page 347
#Description:
##Latin square design for test four different treatments on hay intake of fattening steers
data(data3)
r<-ea1(data3, design=3)
#plot
means.plot(r, col=gray.colors(4))
# more graphical parameters
means.plot(r, col=c(2,7,3,5), bg="cornsilk", las=1, cex.names=2,
sub="treatments", family="sans");grid(10)
# plot = 2
means.plot(r, plot=2, col="dark green", bg="gray", las=1, cex.names=2,
sub="Treatments", family="Times", ylab="Hay intake")
# plot = 2 decreasing =FALSE
means.plot(r, plot=2, las=1, cex.names=2, col="red",lty=2,pch=20,cex=1.1,
sub="Treatments", family="Times", ylab="Hay intake", decreasing=FALSE, legend=FALSE);grid(10)
# plot=3
means.plot(r, plot=3, las=1, cex.names=2,
sub="Contrasts (Tukey 0.05)", family="Times", ylab="")
# plot=3 alpha=0.10
means.plot(ea1(data3, design=3), plot=3, las=2, cex.names=2,
sub="Contrasts (Tukey 0.10)", family="Times", ylab="", alpha=0.10, bg="cornsilk");grid(10)
Plot Means (interactions)
Description
Plot contrasts of means
Usage
means.plotfat(data, plot=1, s=1,test=1, legend=TRUE, letters=TRUE,
family="Times", bg="white", cex.names=0.8, cex.text=0.7,
cex.legend=1, bar.order=1,decreasing=TRUE, ...)
Arguments
data |
output object of ea2 function (see examples) |
plot |
type of plot 1 = bar plot factor 1(default) 2 = bar plot factor 2 3 = bar plot interactions (option 1) 4 = bar plot interactions (option 2) 5 = bar plot interactions (option 3) 6 = bar plot interactions (option 4) |
s |
s=1 (defalt) plot standard deviation s=2 plot standard error of mean |
test |
Letters of the post-hoc test 1=Tukey 2=SNK 3=Duncan 4=t 5=Scott-Knott |
legend |
TRUE = plot p-value of F test FALSE = not plot p-value |
letters |
TRUE = plot letters FALSE = not plot letters |
family |
font of plot |
bg |
background color |
cex.names |
font size in names of treatments (x-axis) |
cex.text |
font size in letters and means |
cex.legend |
font size in legend |
bar.order |
order of bar or means 1 = order of treatments names 2 = order of the means (default) |
decreasing |
decreasing bar order (TRUE or FALSE) |
... |
more plot parameters |
Value
Returns bar plots
Author(s)
Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
See Also
ea1,ea2, means.plot, box.plot
Examples
#data3: Kaps and Lamberson (2009): page 347
#Description:
##Latin square design for test four different treatments on hay intake of fattening steers
data(data3)
r<-ea1(data3, design=3)
#plot
means.plot(r, col=gray.colors(4))
# more graphical parameters
means.plot(r, col=c(2,7,3,5), bg="cornsilk", las=1, cex.names=2,
sub="treatments", family="sans");grid(10)
# plot = 2
means.plot(r, plot=2, col="dark green", bg="gray", las=1, cex.names=2,
sub="Treatments", family="Times", ylab="Hay intake")
# plot = 2 decreasing =FALSE
means.plot(r, plot=2, las=1, cex.names=2, col="red",lty=2,pch=20,cex=1.1,
sub="Treatments", family="Times", ylab="Hay intake", decreasing=FALSE, legend=FALSE);grid(10)
# plot=3
means.plot(r, plot=3, las=1, cex.names=2,
sub="Contrasts (Tukey 0.05)", family="Times", ylab="")
# plot=3 alpha=0.10
means.plot(ea1(data3, design=3), plot=3, las=2, cex.names=2,
sub="Contrasts (Tukey 0.10)", family="Times", ylab="", alpha=0.10, bg="cornsilk");grid(10)
Plot p values of the contrasts
Description
Plot p values of the contrasts
Usage
p.plot(data, ylab="", xlab="", col.lines="red", cex.axis=0.7,
cex=0.9 , col.text="dark green",family="Times", bg="white",...)
Arguments
data |
output object of ea1 or ea2 function (see examples) |
ylab |
title of y-axis |
xlab |
title of x-axis |
col.lines |
colours of the lines |
cex.axis |
font size in axis |
cex |
size of points |
col.text |
colours in letters and means |
family |
font of plot |
bg |
background color |
... |
more plot parameters |
Value
Plot p values of the contrasts
Author(s)
Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
See Also
ea1,ea2, box.plot, means.plot, means.plotfat, ic, ic.plot, m.plot
Examples
#data3: Kaps and Lamberson (2009): page 347
#Description:
##Latin square design for test four different treatments on hay intake of fattening steers
data(data3)
r<-ea1(data3, design=3)
#plot
contrasts=r[[3]]
contrasts
p.plot(contrasts)
#direct
p.plot(r[3])
# more graphical parameters
p.plot(contrasts, bg="cornsilk", cex=1.5,cex.axis=1.5,
main="P-values of the tukey contrasts",family="sans");grid(10)
data('data7')
r<-ea2(data7,4)
p.plot(r[[5]], bg="cornsilk");grid(10)
par(mfrow=c(1,2))
p.plot(r[[9]][1], xlab="treatment 1", cex=0.5, bg="cornsilk");grid(10)
p.plot(r[[9]][2], xlab="treatment 2", cex=0.5, bg="cornsilk");grid(10)
Table of results in the ea1 function
Description
Summary of results in ea1 function
Usage
tab(data, test=1)
Arguments
data |
output object of ea1 function (see examples) |
test |
Letters of the post-hoc test 1=Tukey 2=SNK 3=Duncan 4=t 5=Scott-Knott |
Value
Summary of results in ea1 function
Author(s)
Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>
References
KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.
See Also
ea1,ea2, box.plot, means.plot, means.plotfat, ic.plot, p.plot
Examples
#data3: Kaps and Lamberson (2009): page 347
#Description:
##Latin square design for test four different treatments on hay intake of fattening steers
data(data3)
r<-ea1(data3, design=3)
tab(r)
### multiple variables
t<-c('a','a','a','b','b','b','c','c','c')
r1<-c(10,12,12.8,4,6,8,14,15,16)
r2<-c(102,105,106,125,123,124,99,95,96)
r3<-c(560,589,590,658,678,629,369,389,378)
d<-data.frame(t,r1,r2,r3)
results=ea1(d, design=1, list=TRUE)
# scottknott test
tab(results,test=5)