Package ‘ehymet’

November 27, 2024

Title Methodologies for Functional Data Based on the Epigraph and
Hypograph Indices

Version 0.1.1

Description Implements methods for functional data analysis based on the epigraph
and hypograph indices. These methods transform
functional datasets, whether in one or multiple dimensions, into multivariate
datasets. The transformation involves applying the epigraph, hypograph, and
their modified versions to both the original curves and their first and second
derivatives. The calculation of these indices is tailored to the dimensionality
of the functional dataset, with special considerations for dependencies between

dimensions in multidimensional cases. This approach extends traditional multivariate

data analysis techniques to the functional data setting. A key application of

this package is the EHyClus method, which enhances clustering analysis for
functional data across one or multiple dimensions using the epigraph and
hypograph indices. See Pulido et al. (2023) <doi:10.1007/s11222-023-10213-7>
and Pulido et al. (2024) <doi:10.48550/arXiv.2307.16720>.

License MIT + file LICENSE
Encoding UTF-8

URL https://github.com/bpulidob/ehymet,
https://bpulidob.github.io/ehymet/

BugReports https://github.com/bpulidob/ehymet/issues
Depends R (>=4.1)
Imports clusterCrit, kernlab, stats, tf

Suggests ggplot2, knitr, MASS, parallel, rmarkdown, testthat (>=
3.0.0), tidyr

RoxygenNote 7.3.2
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no

Author Belen Pulido [aut, cre] (<https://orcid.org/0000-0003-2105-959X>),
Jose Ignacio Diez [ctr]

https://doi.org/10.1007/s11222-023-10213-7
https://doi.org/10.48550/arXiv.2307.16720
https://github.com/bpulidob/ehymet
https://bpulidob.github.io/ehymet/
https://github.com/bpulidob/ehymet/issues
https://orcid.org/0000-0003-2105-959X

clustering_validation

Maintainer Belen Pulido <bpulidob4@gmail.com>
Repository CRAN
Date/Publication 2024-11-26 23:00:13 UTC

Contents
clustering_validation 2
clustind_hierarch e 3
clustind_ kkmeans e 4
clustind_kmeans e 5
clustind_spc oL e 6
EHyClus e e 7
EL . e 9
generate_indices L. L e 10
HI . . e 11
MEIL . . . e 12
MHI e 12
sim_model_ex1 e e 13
sim_model_eX2 e e 14

Index 16

clustering_validation Create a table containing four validation metrics for clustering: Pu-

rity, F-measure and Rand Index (RI) and Adjusted Rand Index (ARI).
This function considers pairs of points

Description

Create a table containing four validation metrics for clustering: Purity, F-measure and Rand Index
(RI) and Adjusted Rand Index (ARI). This function considers pairs of points

Usage

clustering_validation(clusters, true_labels, digits = 4)

Arguments
clusters The clusters predicted by the clustering method.
true_labels Atomic vector with the true labels of the data.
digits Number of digits for rounding.

Value

A list containing values for Purity, F-measure, RT and ARI.

clustInd_hierarch 3

Examples

set.seed(1221)

vars <- list(c("dtaEI"”, "dtaMEI"))

data <- sim_model_ex1()

true_labels <- c(rep(1, 50), rep(2, 50))

data_ind <- generate_indices(data)

clus_kmeans <- clustInd_kmeans(data_ind, vars)

cluskmeans_mahalanobis_dtaEIdtaMEI <- clus_kmeans$kmeans_mahalanobis_dtaEIdtaMEI$cluster
clustering_validation(cluskmeans_mahalanobis_dtaEIdtaMEI, true_labels)

clustInd_hierarch Perform hierarchical clustering for a different combinations of indices,
method and distance

Description

Perform hierarchical clustering for a different combinations of indices, method and distance

Usage
clustInd_hierarch(
ind_data,
vars_combinations,
method_list = c("single”, "complete”, "average", "centroid”, "ward.D2"),
dist_vector = c("euclidean”, "manhattan"),
n_cluster = 2,
true_labels = NULL,
n_cores = 1
)
Arguments
ind_data Dataframe containing indices applied to the original data and its first and second

derivatives. See generate_indices.

vars_combinations
list containing one or more combinations of indices in ind_data. If it is non-
named, the names of the variables are set to varsl, ..., varsk, where k is the
number of elements in vars_combinations.

method_list list of clustering methods.

dist_vector list of distance metrics.

n_cluster number of clusters to generate.

true_labels Vector of true labels for validation (if it is not known true_labels is set to NULL)
n_cores Number of cores to do parallel computation. 1 by default, which mean no par-

allel execution.

4 clustInd_kkmeans

Value

A list containing hierarchical clustering results for each configuration.

Examples

varsl <- c("dtaEI", "dtaMEI")

vars2 <- c("dtaHI"”, "dtaMHI")

data <- ehymet::sim_model_ex1()

data_ind <- generate_indices(data)
clustInd_hierarch(data_ind, list(varsl, vars2))

clustInd_kkmeans Kernel k-means clustering using indices

Description

Perform kernel kmeans clustering for a different combinations of indices and kernel

Usage

clustInd_kkmeans(
ind_data,
vars_combinations,
kernel_list = c("rbfdot”, "polydot"),
n_cluster = 2,
true_labels = NULL,
n_cores = 1

Arguments

ind_data Dataframe containing indices applied to the original data and its first and second
derivatives. See generate_indices.

vars_combinations
list containing one or more combinations of indices in ind_data. If it is non-
named, the names of the variables are set to varsl, ..., varsk, where k is the
number of elements in vars_combinations.

kernel_list List of kernels

n_cluster Number of clusters to create

true_labels Vector of true labels for validation (if it is not known true_labels is set to NULL)
n_cores Number of cores to do parallel computation. 1 by default, which mean no par-

allel execution.

Value

A list containing kernel-kmeans clustering results for each configuration.

clustInd_kmeans 5

Examples

varsl <- c("dtaEI"”, "dtaMEI")

vars2 <- c("dtaHI"”, "dtaMHI")

data <- ehymet::sim_model_ex1()

data_ind <- generate_indices(data)
clustInd_kkmeans(data_ind, list(varsl, vars2))

clustInd_kmeans K-means clustering with indices

Description

Perform k-means clustering for a different combinations of indices and distances.

Usage

clustInd_kmeans(
ind_data,
vars_combinations,
dist_vector = c("euclidean”, "mahalanobis"),
n_cluster = 2,
init = "random”,
true_labels = NULL,
n_cores = 1

Arguments

ind_data Dataframe containing indices applied to the original data and its first and second
derivatives. See generate_indices.

vars_combinations
list containing one or more combinations of indices in ind_data. If it is non-
named, the names of the variables are set to varsl, ..., varsk, where k is the
number of elements in vars_combinations.

dist_vector Atomic vector of distance metrics. The possible values are, "euclidean", "maha-
lanobis" or both.

n_cluster Number of clusters to create.

init Centroids initialization meathod. It can be "random" or "kmeanspp".

true_labels Vector of true labels for validation. (if it is not known true_labels is set to NULL)

n_cores Number of cores to do parallel computation. 1 by default, which mean no par-

allel execution.

Value

A list containing hierarchical clustering results for each configuration

A list containing kmeans clustering results for each configuration

6 clustlnd_spc

Examples

varsl <- c("dtaEI"”, "dtaMEI")

vars2 <- c("dtaHI", "dtaMHI")

data <- ehymet::sim_model_ex1()

data_ind <- generate_indices(data)
clustInd_kmeans(data_ind, list(varsl, vars2))

clustInd_spc Spectral clustering using indices

Description

Perform spectral clustering for a different combinations of indices and kernels

Usage

clustInd_spc(
ind_data,
vars_combinations,
kernel_list = c("rbfdot"”, "polydot"),

n_cluster = 2,

true_labels = NULL,
n_cores = 1
)
Arguments
ind_data Dataframe containing indices applied to the original data and its first and second

derivatives. See generate_indices.

vars_combinations
list containing one or more combinations of indices in ind_data. If it is non-
named, the names of the variables are set to varsl, ..., varsk, where k is the
number of elements in vars_combinations.

kernel_list List of kernels

n_cluster Number of clusters to create

true_labels Vector of true labels for validation (if it is not known true_labels is set to NULL)
n_cores Number of cores to do parallel computation. 1 by default, which mean no par-

allel execution.

Value

A list containing kkmeans clustering results for each configuration

EHyClus 7

Examples

varsl <- c("dtaEI", "dtaMEI")

vars2 <- c("dtaHI", "dtaMHI")

data <- ehymet::sim_model_ex1()

data_ind <- generate_indices(data)
clustInd_spc(data_ind, list(varsl, vars2))

EHyClus Clustering using Epigraph and Hypograph indices

Description

It creates a multivariate dataset containing the epigraph, hypograph and/or its modified versions on
the curves and derivatives and then perform hierarchical clustering, kmeans, kernel kmeans, and
spectral clustering

Usage

EHyClus(
curves,
vars_combinations,
k = 30,
n_clusters = 2,
bs = "cr",
clustering_methods = c("hierarch”, "kmeans", "kkmeans", "spc"),
1_method_hierarch = c("single"”, "complete”, "average"”, "centroid”, "ward.D2"),
1_dist_hierarch = c("euclidean”, "manhattan"),
1_dist_kmeans = c("euclidean”, "mahalanobis"),
1_kernel = c("rbfdot”, "polydot"),
true_labels = NULL,

only_best = FALSE,
verbose = FALSE,
n_cores = 1,
)
Arguments
curves Dataset containing the curves to apply a clustering algorithm. The functional

dataset can be one dimensional (n X p) where n is the number of curves and p
the number of time points, or multidimensional (n X p X q) where q represents
the number of dimensions in the data

vars_combinations
If 1ist, each element of the list should be an atomic vector of strings with
the names of the variables. Combinations with non-valid variable names will be
discarded. If the list is non-named, the names of the variables are set to varsl,

8 EHyClus

..., varsk, where k is the number of elements in vars_combinations. If "auto"
is provided, an unique combination of variable will be found. If not provided,
generic combinations of variables will be used. They will not be the same for
uni-dimensional and multi-dimensional problems.

k Number of basis functions for the B-splines. If equals to @, the number of basis
functions will be automatically selected.

n_clusters Number of clusters to generate.

bs A two letter character string indicating the (penalized) smoothing basis to use.

See smooth. terms.
clustering_methods
character vector specifying at least one of the following clustering methods to
be computed: "hierarch", "kmeans", "kkmeans" or "spc".
1_method_hierarch
list of clustering methods for hierarchical clustering.
1_dist_hierarch
list of distances for hierarchical clustering.

1_dist_kmeans 1list of distances for kmeans clustering.

1_kernel list of kernels for kkmeans or spc.

true_labels Numeric vector of true labels for validation. If provided, evaluation metrics are
computed in the final result.

only_best logical value. If TRUE and true_labels is provided, the function will return
only the result for the best clustering method based on the Rand Index. Defaults
to FALSE.

verbose If TRUE, the function will print logs for about the execution of some clustering

methods. Defaults to FALSE.

n_cores Number of cores to do parallel computation. 1 by default, which mean no par-
allel execution. Must be an integer number greater than 1.

Additional arguments for tfb. See tfb.

Value

A list containing the clustering partition for each method and indices combination and, if true_labels
is provided a data frame containing the time elapsed for obtaining a clustering partition of the in-
dices dataset for each methodology. Also, the number of generated clusters and the combinations

of variables used can be seen as attributes of this object.

Examples

univarariate data without labels

curves <- sim_model_ex1(n = 10)

vars_combinations <- list(c("dtaEI", "dtaMEI"), c("dtaHI", "dtaMHI"))
EHyClus(curves, vars_combinations = vars_combinations)

multivariate data with labels
curves <- sim_model_ex2(n = 5)
true_labels <- c(rep(1, 5), rep(2, 5))

EI 9

vars_combinations <- list(c("dtaMEI", "ddtaMEI"), c("dtaMEI", "d2dtaMEI"))
res <- EHyClus(curves, vars_combinations = vars_combinations, true_labels = true_labels)
res$cluster # clustering results

multivariate data and generic (default) vars_combinations
curves <- sim_model_ex2(n = 5)
EHyClus(curves)

EI Epigraph Index (EI) for a functional dataset

Description

The Epigraph Index of a curve x is one minus the proportion of curves in the sample that are above

X.
Usage
EI(curves, ...)
Arguments
curves matrix where each row represents a curve, and each column represents values
along the curve or array with dimension n X p X ¢ with n curves, p values along
the curve, and ¢ dimensions.
Ignored.
Value

numeric vector containing the EI for each curve.

Examples

x <- matrix(c(1, 2, 3, 3, 2, 1, 5, 2, 3, 9, 8, 7), ncol = 3, nrow = 4)
EI(x)

y <- array(c(1, 2, 3, 3, 2, 1,5, 2,3,9,8,7, -1, -5 -6,2,3,0,-1,0,2, -1, -2, 0),
dim = c(3, 4, 2)

)

EICy)

10 generate_indices

generate_indices Create a dataset with indices from a functional dataset in one or mul-
tiple dimensions

Description

Create a dataset with indices from a functional dataset in one or multiple dimensions

Usage

generate_indices(
curves,
K,
bs = "cr",
indices = c("EI", "HI", "MEI", "MHI"),
n_cores = 1,

)
Arguments
curves matrix with dimension n X p in the case of a one-dimensional functional dataset,
or array of dimension n X p X g in the case of a multivariate functional dataset.
n represents the number of curves, p the number of values along the curve, and
in the second case, ¢ is the number of dimensions.
k Number of basis functions for the B-splines. If equals to 0, the number of basis
functions will be automatically selected.
bs A two letter character string indicating the (penalized) smoothing basis to use.
See smooth. terms.
indices Set of indices to be applied to the dataset. They should be any between EI, HI,
MEI and MHI.
n_cores Number of cores to do parallel computation. 1 by default, which mean no par-
allel execution. Must be an integer number greater than 1.
Additional arguments for tfb. See tfb.
Value

A dataframe containing the indices provided in indices for original data, first and second deriva-
tives

Examples

3-dimensional array

x1 <- array(c(1, 2, 3, 3, 2,1, 5, 2,3,9,8,7, -1, -5, -6,2,3,0, -1,0,2, -1, -2, 0),
dim = c(3, 4, 2)

)

HI 11

generate_indices(x1, k = 4)

matrix
x2 <- matrix(c(1, 2, 3, 3, 2, 1, 5, 2, 3, 9, 8, 7), nrow = 3, ncol = 4)
generate_indices(x2, k = 4)

using additional parameter for tf::tfb
curves <- sim_model_ex1(n = 10)
generate_indices(

curves = curves,

k = 20,
bs = "bs",
m = c(3,2), # additional parameter for tfb
penalized = FALSE # additional parameter for tfb
)
HI Hypograph Index (HI) for a functional dataset
Description

The Hypograph Index of a curve x is the proportion of curves in the sample that are below x.

Usage
HI(curves, ...)
Arguments
curves matrix where each row represents a curve, and each column represents values
along the curve or array with dimension n X p X ¢ with n curves, p values along
the curve, and ¢ dimensions.
Ignored.
Value

numeric vector containing the HI for each curve.

Examples

x <- matrix(c(1, 2, 3, 3, 2, 1, 5, 2, 3, 9, 8, 7), ncol = 3, nrow = 4)
HI(x)

y <- array(c(1, 2, 3, 3, 2,1,5,2,3,9,8,7,-1,-5 -6,2,3,0,-1,0, 2, -1, -2, 0),
dim = c(3, 4, 2)

)

HICy)

12 MHI

MEI Modified Epigraph Index (MEI) for functional dataset.

Description

The Modified Epigraph Index of a curve x is one minus the proportion of "time" the curves in the
sample are above x.

Usage
MEI(curves, ...)
Arguments
curves matrix where each row represents a curve, and each column represents values
along the curve or an array with dimension n X p X ¢ with n curves, p values
along the curve, and ¢ dimensions.
Ignored.
Value

numeric vector containing the MEI for each curve.

Examples

x <- matrix(c(1, 2, 3, 3, 2, 1, 5, 2, 3, 9, 8, 7), ncol = 3, nrow = 4)

MEI(x)

y <- array(c(1, 2, 3, 3, 2,1, 5, 2,3,9,8,7,-,-5 -6,2,3,0,-1,0, 2, -1, -2, 0),
dim = c(3, 4, 2)

)

MEI(y)

MHI Modified Hypograph Index (MHI) for a functional dataset

Description

The Modified Hypograph Index of a curve x is the proportion of "time" the curves in the sample are
below x.

Usage

MHI(curves, ...)

sim_model_ex1 13

Arguments
curves matrix where each row represents a curve, and each column represents values
along the curve or an array with dimension n X p x g with n curves, p values
along the curve, and ¢ dimensions.
Ignored.
Value

numeric vector containing the MHI for each curve.

Examples

x <- matrix(c(1, 2, 3, 3, 2, 1, 5, 2, 3, 9, 8, 7), ncol = 3, nrow = 4)

MHI (x)

y <- array(c(1, 2, 3, 3, 2,1,5,2,3,9,8,7, -1, -5 -6,2,3,0, -1,0, 2, -1, -2, 0),
dim = c(3, 4, 2)

)

MHI(y)

sim_model_ex1 Function for generating functional data in one dimension

Description

Each dataset has 2 groups with n curves each, defined in the interval ¢ = [0, 1] with p equidistant
points. The first n curves are generated fron the following model X;(t) = E1(¢) + e(t) where
Ey(t) = E1(X(t)) = 30t2 (1 — t) is the mean function and e(t) is a centered Gaussian process
with covariance matrix Cov(e(t;), e(t;)) = 0.3 exp(— M) The remaining 50 functions are gen-
erated from model i_sim with i_sim € {1,...,8}. The first three models contain changes in the
mean, while the covariance matrix does not change. Model 4 and 5 are obtained by multiplying the
covariance matrix by a constant. Model 6 is obtained from adding to E(t) a centered Gaussian
process h(t) whose covariance matrix is given by Cov(e(t;), e(t;)) = 0.5 exp(— M) Model 7
and 8 are obtained by a different mean function.

Model 1. X;(t) = 30¢3 (1 —t) + 0.5 + e(t).
Model 2. X (t) = 30t3 (1 —t) + 0.75 + e(t).
Model 3. X5(t) = 30t2 (1 —) + 1 + e(2).
Model 4. X, (t) = 30t2 (1 —) + 2e(t).
Model 5. X5(t) = 30t2 (1 — t) + 0.25¢(t).
Model 6. X(t) = 30t3 (1 — t) + h(t).
Model 7. X7(t) = 30t(1 — t)* + h(t).
Model 8. X5 (t) = 30t(1 — t)° + e(t).

14 sim_model_ex2

Usage

sim_model_ex1(n = 50, p = 30, i_sim = 1)

Arguments
n Number of curves to generate for each of the two groups. Set to 50 by default.
p Number of grid points of the curves. Curves are generated over the interval
[0, 1]. Set to 30 grid point by default.
i_sim Integer setto 1,...,8.
Value

data matrix of size 2n X p.

Examples

sml <- sim_model_ex1()
dim(sm1)

sim_model_ex2 Function for generating functional data in one or multiple dimension

Description

The function can generate one-dimensional or multi-dimensional curves. For i_sim 1 or 2, one-
dimensional curves are generated. For i_sim 3 or 4, multi-dimensional curves are generated.

Usage

sim_model_ex2(n = 50, p = 150, i_sim = 1)

Arguments
n Number of curves to generate for each of the two groups. Set to 50 by default.
p Number of grid points of the curves. Curves are generated over the interval
[0, 1]. Set to 150 grid point by default.
i_sim Integer set to 1, ...,4 NULL by default in which case a seed is not set.
Value

data matrix of size 2n x pif ¢_sim € 1,2 or an array of dimensions 2n x p x 2 if i_sim € 3, 4.

sim_model_ex2

Examples

sml <- sim_model_ex2()
dim(sm1) # This should output (100, 150) by default, since n =

sm4 <- sim_model_ex2(i_sim = 4)
dim(sm4) # This should output (100, 150, 2) by default, since n

50 and p = 150

= 50 and p = 150

15

Index

clustering_validation, 2
clustInd_hierarch, 3
clustInd_kkmeans, 4
clustInd_kmeans, 5
clustInd_spc, 6

EHyClus, 7
EI,9

generate_indices, 3-6, 10
HI, 11

MEI, 12
MHI, 12

sim_model_ex1, 13
sim_model_ex2, 14
smooth.terms, 8, 10

tfb, 8, 10

16

	clustering_validation
	clustInd_hierarch
	clustInd_kkmeans
	clustInd_kmeans
	clustInd_spc
	EHyClus
	EI
	generate_indices
	HI
	MEI
	MHI
	sim_model_ex1
	sim_model_ex2
	Index

