
Package ‘ellmer’
June 3, 2025

Title Chat with Large Language Models

Version 0.2.1

Description Chat with large language models from a range of providers
including 'Claude' <https://claude.ai>, 'OpenAI'
<https://chatgpt.com>, and more. Supports streaming, asynchronous
calls, tool calling, and structured data extraction.

License MIT + file LICENSE

URL https://ellmer.tidyverse.org, https://github.com/tidyverse/ellmer

BugReports https://github.com/tidyverse/ellmer/issues

Depends R (>= 4.1)

Imports cli, coro (>= 1.1.0), glue, httr2 (>= 1.1.1), jsonlite, later
(>= 1.4.0), lifecycle, promises (>= 1.3.1), R6, rlang (>=
1.1.0), S7 (>= 0.2.0)

Suggests base64enc, connectcreds, curl (>= 6.0.1), gargle, gitcreds,
knitr, magick, openssl, paws.common, rmarkdown, shiny,
shinychat (>= 0.2.0), testthat (>= 3.0.0), withr

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate, rmarkdown

Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first test-provider-*

Encoding UTF-8

RoxygenNote 7.3.2

Collate 'utils-S7.R' 'types.R' 'tools-def.R' 'content.R' 'provider.R'
'as-json.R' 'batch-chat.R' 'chat-parallel.R'
'chat-structured.R' 'utils-coro.R' 'chat.R' 'content-image.R'
'content-pdf.R' 'turns.R' 'content-tools.R' 'deprecated.R'
'ellmer-package.R' 'httr2.R' 'import-standalone-obj-type.R'
'import-standalone-purrr.R' 'import-standalone-types-check.R'
'interpolate.R' 'params.R' 'provider-openai.R'

1

https://claude.ai
https://chatgpt.com
https://ellmer.tidyverse.org
https://github.com/tidyverse/ellmer
https://github.com/tidyverse/ellmer/issues

2 Contents

'provider-azure.R' 'provider-bedrock.R' 'provider-claude.R'
'provider-gemini.R' 'provider-cloudflare.R' 'provider-cortex.R'
'provider-databricks.R' 'provider-deepseek.R'
'provider-gemini-upload.R' 'provider-github.R'
'provider-groq.R' 'provider-huggingface.r' 'provider-mistral.R'
'provider-ollama.R' 'provider-openrouter.R'
'provider-perplexity.R' 'provider-portkey.R'
'provider-snowflake.R' 'provider-vllm.R' 'shiny.R' 'tokens.R'
'tools-def-auto.R' 'utils-callbacks.R' 'utils-cat.R'
'utils-merge.R' 'utils-prettytime.R' 'utils.R' 'zzz.R'

NeedsCompilation no

Author Hadley Wickham [aut, cre] (ORCID:
<https://orcid.org/0000-0003-4757-117X>),

Joe Cheng [aut],
Aaron Jacobs [aut],
Garrick Aden-Buie [aut] (ORCID:

<https://orcid.org/0000-0002-7111-0077>),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Hadley Wickham <hadley@posit.co>

Repository CRAN

Date/Publication 2025-06-03 15:00:01 UTC

Contents
batch_chat . 3
Chat . 5
chat_anthropic . 11
chat_aws_bedrock . 12
chat_azure_openai . 14
chat_cloudflare . 15
chat_cortex_analyst . 17
chat_databricks . 18
chat_deepseek . 20
chat_github . 22
chat_google_gemini . 23
chat_groq . 25
chat_huggingface . 26
chat_mistral . 28
chat_ollama . 29
chat_openai . 31
chat_openrouter . 32
chat_perplexity . 34
chat_portkey . 35
chat_snowflake . 37
chat_vllm . 38
Content . 39

https://orcid.org/0000-0003-4757-117X
https://orcid.org/0000-0002-7111-0077
https://ror.org/03wc8by49

batch_chat 3

contents_text . 41
content_image_url . 42
content_pdf_file . 44
create_tool_def . 44
google_upload . 45
interpolate . 47
live_console . 48
parallel_chat . 48
params . 50
Provider . 51
token_usage . 52
tool . 52
tool_annotations . 54
tool_reject . 55
Turn . 57
Type . 58
type_boolean . 59

Index 62

batch_chat Submit multiple chats in one batch

Description

[Experimental]
batch_chat() and batch_chat_structured() currently only work with chat_openai() and
chat_anthropic(). They use the OpenAI and Anthropic batch APIs which allow you to sub-
mit multiple requests simultaneously. The results can take up to 24 hours to complete, but in return
you pay 50% less than usual (but note that ellmer doesn’t include this discount in its pricing meta-
data). If you want to get results back more quickly, or you’re working with a different provider, you
may want to use parallel_chat() instead.

Since batched requests can take a long time to complete, batch_chat() requires a file path that
is used to store information about the batch so you never lose any work. You can either set wait
= FALSE or simply interrupt the waiting process, then later, either call batch_chat() to resume
where you left off or call batch_chat_completed() to see if the results are ready to retrieve.
batch_chat() will store the chat responses in this file, so you can either keep it around to cache
the results, or delete it to free up disk space.

This API is marked as experimental since I don’t yet know how to handle errors in the most helpful
way. Fortunately they don’t seem to be common, but if you have ideas, please let me know!

Usage

batch_chat(chat, prompts, path, wait = TRUE)

batch_chat_structured(
chat,

https://platform.openai.com/docs/guides/batch
https://docs.anthropic.com/en/docs/build-with-claude/batch-processing

4 batch_chat

prompts,
path,
type,
wait = TRUE,
convert = TRUE,
include_tokens = FALSE,
include_cost = FALSE

)

batch_chat_completed(chat, prompts, path)

Arguments

chat A base chat object.

prompts A vector created by interpolate() or a list of character vectors.

path Path to file (with .json extension) to store state.
The file records a hash of the provider, the prompts, and the existing chat turns.
If you attempt to reuse the same file with any of these being different, you’ll get
an error.

wait If TRUE, will wait for batch to complete. If FALSE, it will return NULL if the batch
is not complete, and you can retrieve the results later by re-running batch_chat()
when batch_chat_completed() is TRUE.

type A type specification for the extracted data. Should be created with a type_()
function.

convert If TRUE, automatically convert from JSON lists to R data types using the schema.
This typically works best when type is type_object() as this will give you a
data frame with one column for each property. If FALSE, returns a list.

include_tokens If TRUE, and the result is a data frame, will add input_tokens and output_tokens
columns giving the total input and output tokens for each prompt.

include_cost If TRUE, and the result is a data frame, will add cost column giving the cost of
each prompt.

Examples

chat <- chat_openai(model = "gpt-4.1-nano")

Chat --

prompts <- interpolate("What do people from {{state.name}} bring to a potluck dinner?")
Not run:
chats <- batch_chat(chat, prompts, path = "potluck.json")
chats

End(Not run)

Structured data ---
prompts <- list(

"I go by Alex. 42 years on this planet and counting.",

Chat 5

"Pleased to meet you! I'm Jamal, age 27.",
"They call me Li Wei. Nineteen years young.",
"Fatima here. Just celebrated my 35th birthday last week.",
"The name's Robert - 51 years old and proud of it.",
"Kwame here - just hit the big 5-0 this year."

)
type_person <- type_object(name = type_string(), age = type_number())
Not run:
data <- batch_chat_structured(

chat = chat,
prompts = prompts,
path = "people-data.json",
type = type_person

)
data

End(Not run)

Chat A chat

Description

A Chat is a sequence of user and assistant Turns sent to a specific Provider. A Chat is a mutable
R6 object that takes care of managing the state associated with the chat; i.e. it records the messages
that you send to the server, and the messages that you receive back. If you register a tool (i.e. an R
function that the assistant can call on your behalf), it also takes care of the tool loop.

You should generally not create this object yourself, but instead call chat_openai() or friends
instead.

Value

A Chat object

Methods

Public methods:
• Chat$new()

• Chat$get_turns()

• Chat$set_turns()

• Chat$add_turn()

• Chat$get_system_prompt()

• Chat$get_model()

• Chat$set_system_prompt()

• Chat$get_tokens()

• Chat$get_cost()

6 Chat

• Chat$last_turn()

• Chat$chat()

• Chat$chat_structured()

• Chat$chat_structured_async()

• Chat$chat_async()

• Chat$stream()

• Chat$stream_async()

• Chat$register_tool()

• Chat$get_provider()

• Chat$get_tools()

• Chat$set_tools()

• Chat$on_tool_request()

• Chat$on_tool_result()

• Chat$extract_data()

• Chat$extract_data_async()

• Chat$clone()

Method new():
Usage:
Chat$new(provider, system_prompt = NULL, echo = "none")

Arguments:

provider A provider object.
system_prompt System prompt to start the conversation with.
echo One of the following options:

• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when running at the

console).
• all: echo all input and output.
Note this only affects the chat() method.

Method get_turns(): Retrieve the turns that have been sent and received so far (optionally
starting with the system prompt, if any).

Usage:
Chat$get_turns(include_system_prompt = FALSE)

Arguments:

include_system_prompt Whether to include the system prompt in the turns (if any exists).

Method set_turns(): Replace existing turns with a new list.

Usage:
Chat$set_turns(value)

Arguments:

value A list of Turns.

Chat 7

Method add_turn(): Add a pair of turns to the chat.

Usage:
Chat$add_turn(user, system)

Arguments:
user The user Turn.
system The system Turn.

Method get_system_prompt(): If set, the system prompt, it not, NULL.

Usage:
Chat$get_system_prompt()

Method get_model(): Retrieve the model name

Usage:
Chat$get_model()

Method set_system_prompt(): Update the system prompt

Usage:
Chat$set_system_prompt(value)

Arguments:
value A character vector giving the new system prompt

Method get_tokens(): A data frame with a tokens column that proides the number of input
tokens used by user turns and the number of output tokens used by assistant turns.

Usage:
Chat$get_tokens(include_system_prompt = FALSE)

Arguments:
include_system_prompt Whether to include the system prompt in the turns (if any exists).

Method get_cost(): The cost of this chat

Usage:
Chat$get_cost(include = c("all", "last"))

Arguments:
include The default, "all", gives the total cumulative cost of this chat. Alternatively, use

"last" to get the cost of just the most recent turn.

Method last_turn(): The last turn returned by the assistant.

Usage:
Chat$last_turn(role = c("assistant", "user", "system"))

Arguments:
role Optionally, specify a role to find the last turn with for the role.

Returns: Either a Turn or NULL, if no turns with the specified role have occurred.

Method chat(): Submit input to the chatbot, and return the response as a simple string (probably
Markdown).

8 Chat

Usage:
Chat$chat(..., echo = NULL)

Arguments:
... The input to send to the chatbot. Can be strings or images (see content_image_file()

and content_image_url().
echo Whether to emit the response to stdout as it is received. If NULL, then the value of echo

set when the chat object was created will be used.

Method chat_structured(): Extract structured data

Usage:
Chat$chat_structured(..., type, echo = "none", convert = TRUE)

Arguments:
... The input to send to the chatbot. Will typically include the phrase "extract structured data".
type A type specification for the extracted data. Should be created with a type_() function.
echo Whether to emit the response to stdout as it is received. Set to "text" to stream JSON data

as it’s generated (not supported by all providers).
convert Automatically convert from JSON lists to R data types using the schema. For example,

this will turn arrays of objects into data frames and arrays of strings into a character vector.

Method chat_structured_async(): Extract structured data, asynchronously. Returns a promise
that resolves to an object matching the type specification.

Usage:
Chat$chat_structured_async(..., type, echo = "none")

Arguments:
... The input to send to the chatbot. Will typically include the phrase "extract structured data".
type A type specification for the extracted data. Should be created with a type_() function.
echo Whether to emit the response to stdout as it is received. Set to "text" to stream JSON data

as it’s generated (not supported by all providers).

Method chat_async(): Submit input to the chatbot, and receive a promise that resolves with
the response all at once. Returns a promise that resolves to a string (probably Markdown).

Usage:
Chat$chat_async(..., tool_mode = c("concurrent", "sequential"))

Arguments:
... The input to send to the chatbot. Can be strings or images.
tool_mode Whether tools should be invoked one-at-a-time ("sequential") or concurrently

("concurrent"). Sequential mode is best for interactive applications, especially when a
tool may involve an interactive user interface. Concurrent mode is the default and is best
suited for automated scripts or non-interactive applications.

Method stream(): Submit input to the chatbot, returning streaming results. Returns A coro
generator that yields strings. While iterating, the generator will block while waiting for more
content from the chatbot.

Usage:

https://coro.r-lib.org/articles/generator.html#iterating
https://coro.r-lib.org/articles/generator.html#iterating

Chat 9

Chat$stream(..., stream = c("text", "content"))

Arguments:
... The input to send to the chatbot. Can be strings or images.
stream Whether the stream should yield only "text" or ellmer’s rich content types. When

stream = "content", stream() yields Content objects.

Method stream_async(): Submit input to the chatbot, returning asynchronously streaming
results. Returns a coro async generator that yields string promises.

Usage:
Chat$stream_async(
...,
tool_mode = c("concurrent", "sequential"),
stream = c("text", "content")

)

Arguments:
... The input to send to the chatbot. Can be strings or images.
tool_mode Whether tools should be invoked one-at-a-time ("sequential") or concurrently

("concurrent"). Sequential mode is best for interactive applications, especially when a
tool may involve an interactive user interface. Concurrent mode is the default and is best
suited for automated scripts or non-interactive applications.

stream Whether the stream should yield only "text" or ellmer’s rich content types. When
stream = "content", stream() yields Content objects.

Method register_tool(): Register a tool (an R function) that the chatbot can use. If the
chatbot decides to use the function, ellmer will automatically call it and submit the results back.
The return value of the function. Generally, this should either be a string, or a JSON-serializable
value. If you must have more direct control of the structure of the JSON that’s returned, you can
return a JSON-serializable value wrapped in base::I(), which ellmer will leave alone until the
entire request is JSON-serialized.

Usage:
Chat$register_tool(tool_def)

Arguments:
tool_def Tool definition created by tool().

Method get_provider(): Get the underlying provider object. For expert use only.

Usage:
Chat$get_provider()

Method get_tools(): Retrieve the list of registered tools.

Usage:
Chat$get_tools()

Method set_tools(): Sets the available tools. For expert use only; most users should use
register_tool().

Usage:

https://coro.r-lib.org/reference/async_generator.html

10 Chat

Chat$set_tools(tools)

Arguments:
tools A list of tool definitions created with tool().

Method on_tool_request(): Register a callback for a tool request event.

Usage:
Chat$on_tool_request(callback)

Arguments:
callback A function to be called when a tool request event occurs, which must have request

as its only argument.

Returns: A function that can be called to remove the callback.

Method on_tool_result(): Register a callback for a tool result event.

Usage:
Chat$on_tool_result(callback)

Arguments:
callback A function to be called when a tool result event occurs, which must have result as

its only argument.

Returns: A function that can be called to remove the callback.

Method extract_data(): [Deprecated] Deprecated in favour of $chat_structured().

Usage:
Chat$extract_data(...)

Arguments:
... See $chat_structured()

Method extract_data_async(): [Deprecated]
Usage:
Chat$extract_data_async(...)

Arguments:
... See $chat_structured_async()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Chat$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

chat <- chat_openai(echo = TRUE)
chat$chat("Tell me a funny joke")

chat_anthropic 11

chat_anthropic Chat with an Anthropic Claude model

Description

Anthropic provides a number of chat based models under the Claude moniker. Note that a Claude
Pro membership does not give you the ability to call models via the API; instead, you will need to
sign up (and pay for) a developer account.

Usage

chat_anthropic(
system_prompt = NULL,
params = NULL,
max_tokens = deprecated(),
model = NULL,
api_args = list(),
base_url = "https://api.anthropic.com/v1",
beta_headers = character(),
api_key = anthropic_key(),
echo = NULL

)

models_anthropic(
base_url = "https://api.anthropic.com/v1",
api_key = anthropic_key()

)

Arguments

system_prompt A system prompt to set the behavior of the assistant.
params Common model parameters, usually created by params().
max_tokens Maximum number of tokens to generate before stopping.
model The model to use for the chat (defaults to "claude-sonnet-4-20250514"). We

regularly update the default, so we strongly recommend explicitly specifying a
model for anything other than casual use. Use models_anthropic() to see all
options.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

base_url The base URL to the endpoint; the default uses OpenAI.
beta_headers Optionally, a character vector of beta headers to opt-in claude features that are

still in beta.
api_key API key to use for authentication.

You generally should not supply this directly, but instead set the ANTHROPIC_API_KEY
environment variable. The best place to set this is in .Renviron, which you can
easily edit by calling usethis::edit_r_environ().

https://www.anthropic.com
https://www.anthropic.com/claude
https://console.anthropic.com/

12 chat_aws_bedrock

echo One of the following options:

• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when

running at the console).
• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

See Also

Other chatbots: chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(), chat_cortex_analyst(),
chat_databricks(), chat_deepseek(), chat_github(), chat_google_gemini(), chat_groq(),
chat_huggingface(), chat_mistral(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity(), chat_portkey()

Examples

chat <- chat_anthropic()
chat$chat("Tell me three jokes about statisticians")

chat_aws_bedrock Chat with an AWS bedrock model

Description

AWS Bedrock provides a number of language models, including those from Anthropic’s Claude,
using the Bedrock Converse API.

Authentication:
Authentication is handled through {paws.common}, so if authentication does not work for you au-
tomatically, you’ll need to follow the advice at https://www.paws-r-sdk.com/#credentials.
In particular, if your org uses AWS SSO, you’ll need to run aws sso login at the terminal.

Usage

chat_aws_bedrock(
system_prompt = NULL,
model = NULL,
profile = NULL,
api_args = list(),
echo = NULL

)

models_aws_bedrock(profile = NULL)

https://aws.amazon.com/bedrock/
https://aws.amazon.com/bedrock/claude/
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html
https://www.paws-r-sdk.com/#credentials

chat_aws_bedrock 13

Arguments

system_prompt A system prompt to set the behavior of the assistant.

model The model to use for the chat (defaults to "anthropic.claude-3-5-sonnet-20240620-
v1:0"). We regularly update the default, so we strongly recommend explicitly
specifying a model for anything other than casual use. Use models_models_aws_bedrock()
to see all options. .
While ellmer provides a default model, there’s no guarantee that you’ll have
access to it, so you’ll need to specify a model that you can. If you’re using cross-
region inference, you’ll need to use the inference profile ID, e.g. model="us.anthropic.claude-3-5-sonnet-20240620-v1:0".

profile AWS profile to use.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Some useful arguments include:

api_args = list(
inferenceConfig = list(
maxTokens = 100,
temperature = 0.7,
topP = 0.9,
topK = 20

)
)

echo One of the following options:

• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when

running at the console).
• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_azure_openai(), chat_cloudflare(), chat_cortex_analyst(),
chat_databricks(), chat_deepseek(), chat_github(), chat_google_gemini(), chat_groq(),
chat_huggingface(), chat_mistral(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity(), chat_portkey()

Examples

Not run:
Basic usage
chat <- chat_aws_bedrock()
chat$chat("Tell me three jokes about statisticians")

End(Not run)

https://aws.amazon.com/blogs/machine-learning/getting-started-with-cross-region-inference-in-amazon-bedrock/
https://aws.amazon.com/blogs/machine-learning/getting-started-with-cross-region-inference-in-amazon-bedrock/

14 chat_azure_openai

chat_azure_openai Chat with a model hosted on Azure OpenAI

Description

The Azure OpenAI server hosts a number of open source models as well as proprietary models from
OpenAI.

Authentication:
chat_azure_openai() supports API keys and the credentials parameter, but it also makes use
of:

• Azure service principals (when the AZURE_TENANT_ID, AZURE_CLIENT_ID, and AZURE_CLIENT_SECRET
environment variables are set).

• Interactive Entra ID authentication, like the Azure CLI.
• Viewer-based credentials on Posit Connect. Requires the connectcreds package.

Usage

chat_azure_openai(
endpoint = azure_endpoint(),
deployment_id,
params = NULL,
api_version = NULL,
system_prompt = NULL,
api_key = NULL,
token = deprecated(),
credentials = NULL,
api_args = list(),
echo = c("none", "output", "all")

)

Arguments

endpoint Azure OpenAI endpoint url with protocol and hostname, i.e. https://{your-resource-name}.openai.azure.com.
Defaults to using the value of the AZURE_OPENAI_ENDPOINT envinronment vari-
able.

deployment_id Deployment id for the model you want to use.

params Common model parameters, usually created by params().

api_version The API version to use.

system_prompt A system prompt to set the behavior of the assistant.

api_key API key to use for authentication.
You generally should not supply this directly, but instead set the AZURE_OPENAI_API_KEY
environment variable. The best place to set this is in .Renviron, which you can
easily edit by calling usethis::edit_r_environ().

https://azure.microsoft.com/en-us/products/ai-services/openai-service

chat_cloudflare 15

token [Deprecated] A literal Azure token to use for authentication. Deprecated in
favour of ambient Azure credentials or an explicit credentials argument.

credentials A list of authentication headers to pass into httr2::req_headers(), a function
that returns them, or NULL to use token or api_key to generate these headers in-
stead. This is an escape hatch that allows users to incorporate Azure credentials
generated by other packages into ellmer, or to manage the lifetime of credentials
that need to be refreshed.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:

• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when

running at the console).
• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_cloudflare(), chat_cortex_analyst(),
chat_databricks(), chat_deepseek(), chat_github(), chat_google_gemini(), chat_groq(),
chat_huggingface(), chat_mistral(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity(), chat_portkey()

Examples

Not run:
chat <- chat_azure_openai(deployment_id = "gpt-4o-mini")
chat$chat("Tell me three jokes about statisticians")

End(Not run)

chat_cloudflare Chat with a model hosted on CloudFlare

Description

Cloudflare works AI hosts a variety of open-source AI models. To use the Cloudflare API, you must
have an Account ID and an Access Token, which you can obtain by following these instructions.

Known limitations:
• Tool calling does not appear to work.
• Images don’t appear to work.

https://www.cloudflare.com/developer-platform/products/workers-ai/
https://developers.cloudflare.com/workers-ai/get-started/rest-api/

16 chat_cloudflare

Usage

chat_cloudflare(
account = cloudflare_account(),
system_prompt = NULL,
params = NULL,
api_key = cloudflare_key(),
model = NULL,
api_args = list(),
echo = NULL

)

Arguments

account The Cloudflare account ID. Taken from the CLOUDFLARE_ACCOUNT_ID env var,
if defined.

system_prompt A system prompt to set the behavior of the assistant.

params Common model parameters, usually created by params().

api_key The API key to use for authentication. You generally should not supply this
directly, but instead set the HUGGINGFACE_API_KEY environment variable.

model The model to use for the chat (defaults to "meta-llama/Llama-3.3-70b-instruct-
fp8-fast"). We regularly update the default, so we strongly recommend explicitly
specifying a model for anything other than casual use.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:

• none: don’t emit any output (default when running in a function).

• output: echo text and tool-calling output as it streams in (default when
running at the console).

• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cortex_analyst(),
chat_databricks(), chat_deepseek(), chat_github(), chat_google_gemini(), chat_groq(),
chat_huggingface(), chat_mistral(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity(), chat_portkey()

chat_cortex_analyst 17

Examples

Not run:
chat <- chat_cloudflare()
chat$chat("Tell me three jokes about statisticians")

End(Not run)

chat_cortex_analyst Create a chatbot that speaks to the Snowflake Cortex Analyst

Description

Chat with the LLM-powered Snowflake Cortex Analyst.

Authentication:
chat_cortex_analyst() picks up the following ambient Snowflake credentials:

• A static OAuth token defined via the SNOWFLAKE_TOKEN environment variable.

• Key-pair authentication credentials defined via the SNOWFLAKE_USER and SNOWFLAKE_PRIVATE_KEY
(which can be a PEM-encoded private key or a path to one) environment variables.

• Posit Workbench-managed Snowflake credentials for the corresponding account.

• Viewer-based credentials on Posit Connect. Requires the connectcreds package.

Known limitations:
Unlike most comparable model APIs, Cortex does not take a system prompt. Instead, the caller
must provide a "semantic model" describing available tables, their meaning, and verified queries
that can be run against them as a starting point. The semantic model can be passed as a YAML
string or via reference to an existing file in a Snowflake Stage.

Note that Cortex does not support multi-turn, so it will not remember previous messages. Nor
does it support registering tools, and attempting to do so will result in an error.

See chat_snowflake() to chat with more general-purpose models hosted on Snowflake.

Usage

chat_cortex_analyst(
account = snowflake_account(),
credentials = NULL,
model_spec = NULL,
model_file = NULL,
api_args = list(),
echo = c("none", "output", "all")

)

https://docs.snowflake.com/en/user-guide/snowflake-cortex/cortex-analyst

18 chat_databricks

Arguments

account A Snowflake account identifier, e.g. "testorg-test_account". Defaults to
the value of the SNOWFLAKE_ACCOUNT environment variable.

credentials A list of authentication headers to pass into httr2::req_headers(), a function
that returns them when called, or NULL, the default, to use ambient credentials.

model_spec A semantic model specification, or NULL when using model_file instead.

model_file Path to a semantic model file stored in a Snowflake Stage, or NULL when using
model_spec instead.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:

• none: don’t emit any output (default when running in a function).

• output: echo text and tool-calling output as it streams in (default when
running at the console).

• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(),
chat_databricks(), chat_deepseek(), chat_github(), chat_google_gemini(), chat_groq(),
chat_huggingface(), chat_mistral(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity(), chat_portkey()

Examples

chat <- chat_cortex_analyst(
model_file = "@my_db.my_schema.my_stage/model.yaml"

)
chat$chat("What questions can I ask?")

chat_databricks Chat with a model hosted on Databricks

https://docs.snowflake.com/en/user-guide/admin-account-identifier

chat_databricks 19

Description

Databricks provides out-of-the-box access to a number of foundation models and can also serve as
a gateway for external models hosted by a third party.

Authentication:
chat_databricks() picks up on ambient Databricks credentials for a subset of the Databricks
client unified authentication model. Specifically, it supports:

• Personal access tokens
• Service principals via OAuth (OAuth M2M)
• User account via OAuth (OAuth U2M)
• Authentication via the Databricks CLI
• Posit Workbench-managed credentials
• Viewer-based credentials on Posit Connect. Requires the connectcreds package.

Known limitations:
Databricks models do not support images, but they do support structured outputs and tool calls
for most models.

Usage

chat_databricks(
workspace = databricks_workspace(),
system_prompt = NULL,
model = NULL,
token = NULL,
api_args = list(),
echo = c("none", "output", "all")

)

Arguments

workspace The URL of a Databricks workspace, e.g. "https://example.cloud.databricks.com".
Will use the value of the environment variable DATABRICKS_HOST, if set.

system_prompt A system prompt to set the behavior of the assistant.

model The model to use for the chat (defaults to "databricks-claude-3-7-sonnet"). We
regularly update the default, so we strongly recommend explicitly specifying a
model for anything other than casual use.
Available foundational models include:

• databricks-claude-3-7-sonnet (the default)
• databricks-mixtral-8x7b-instruct

• databricks-meta-llama-3-1-70b-instruct

• databricks-meta-llama-3-1-405b-instruct

token An authentication token for the Databricks workspace, or NULL to use ambient
credentials.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

https://docs.databricks.com/en/machine-learning/model-serving/score-foundation-models.html
https://docs.databricks.com/en/dev-tools/auth/unified-auth.html
https://docs.databricks.com/en/dev-tools/auth/unified-auth.html

20 chat_deepseek

echo One of the following options:

• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when

running at the console).
• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(),
chat_cortex_analyst(), chat_deepseek(), chat_github(), chat_google_gemini(), chat_groq(),
chat_huggingface(), chat_mistral(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity(), chat_portkey()

Examples

Not run:
chat <- chat_databricks()
chat$chat("Tell me three jokes about statisticians")

End(Not run)

chat_deepseek Chat with a model hosted on DeepSeek

Description

Sign up at https://platform.deepseek.com.

Known limitations:
• Structured data extraction is not supported.
• Images are not supported.

Usage

chat_deepseek(
system_prompt = NULL,
base_url = "https://api.deepseek.com",
api_key = deepseek_key(),
model = NULL,
seed = NULL,
api_args = list(),
echo = NULL

)

https://platform.deepseek.com

chat_deepseek 21

Arguments

system_prompt A system prompt to set the behavior of the assistant.

base_url The base URL to the endpoint; the default uses DeepSeek.

api_key API key to use for authentication.

You generally should not supply this directly, but instead set the DEEPSEEK_API_KEY
environment variable. The best place to set this is in .Renviron, which you can
easily edit by calling usethis::edit_r_environ().

model The model to use for the chat (defaults to "deepseek-chat"). We regularly up-
date the default, so we strongly recommend explicitly specifying a model for
anything other than casual use.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:

• none: don’t emit any output (default when running in a function).

• output: echo text and tool-calling output as it streams in (default when
running at the console).

• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(),
chat_cortex_analyst(), chat_databricks(), chat_github(), chat_google_gemini(), chat_groq(),
chat_huggingface(), chat_mistral(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity(), chat_portkey()

Examples

Not run:
chat <- chat_deepseek()
chat$chat("Tell me three jokes about statisticians")

End(Not run)

22 chat_github

chat_github Chat with a model hosted on the GitHub model marketplace

Description

GitHub (via Azure) hosts a number of open source and OpenAI models. To access the GitHub
model marketplace, you will need to apply for and be accepted into the beta access program. See
https://github.com/marketplace/models for details.

This function is a lightweight wrapper around chat_openai() with the defaults tweaked for the
GitHub model marketplace.

Usage

chat_github(
system_prompt = NULL,
base_url = "https://models.inference.ai.azure.com/",
api_key = github_key(),
model = NULL,
seed = NULL,
api_args = list(),
echo = NULL

)

Arguments

system_prompt A system prompt to set the behavior of the assistant.

base_url The base URL to the endpoint; the default uses OpenAI.

api_key The API key to use for authentication. You generally should not supply this
directly, but instead manage your GitHub credentials as described in https:
//usethis.r-lib.org/articles/git-credentials.html. For headless en-
vironments, this will also look in the GITHUB_PAT env var.

model The model to use for the chat (defaults to "gpt-4o"). We regularly update the
default, so we strongly recommend explicitly specifying a model for anything
other than casual use.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:

• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when

running at the console).
• all: echo all input and output.

Note this only affects the chat() method.

https://github.com/marketplace/models
https://usethis.r-lib.org/articles/git-credentials.html
https://usethis.r-lib.org/articles/git-credentials.html

chat_google_gemini 23

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(),
chat_cortex_analyst(), chat_databricks(), chat_deepseek(), chat_google_gemini(), chat_groq(),
chat_huggingface(), chat_mistral(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity(), chat_portkey()

Examples

Not run:
chat <- chat_github()
chat$chat("Tell me three jokes about statisticians")

End(Not run)

chat_google_gemini Chat with a Google Gemini or Vertex AI model

Description

Google’s AI offering is broken up into two parts: Gemini and Vertex AI. Most enterprises are likely
to use Vertex AI, and individuals are likely to use Gemini.

Use google_upload() to upload files (PDFs, images, video, audio, etc.)

Authentication:
By default, chat_google_gemini() will use Google’s default application credentials if there is
no API key provided. This requires the gargle package.
It can also pick up on viewer-based credentials on Posit Connect. This in turn requires the con-
nectcreds package.

Usage

chat_google_gemini(
system_prompt = NULL,
base_url = "https://generativelanguage.googleapis.com/v1beta/",
api_key = NULL,
model = NULL,
params = NULL,
api_args = list(),
echo = NULL

)

chat_google_vertex(
location,

24 chat_google_gemini

project_id,
system_prompt = NULL,
model = NULL,
params = NULL,
api_args = list(),
echo = NULL

)

models_google_gemini(
base_url = "https://generativelanguage.googleapis.com/v1beta/",
api_key = NULL

)

models_google_vertex(location, project_id)

Arguments

system_prompt A system prompt to set the behavior of the assistant.

base_url The base URL to the endpoint; the default uses OpenAI.

api_key API key to use for authentication.
You generally should not supply this directly, but instead set the GOOGLE_API_KEY
environment variable. The best place to set this is in .Renviron, which you can
easily edit by calling usethis::edit_r_environ(). For Gemini, you can al-
ternatively set GEMINI_API_KEY.

model The model to use for the chat (defaults to "gemini-2.0-flash"). We regularly
update the default, so we strongly recommend explicitly specifying a model
for anything other than casual use. Use models_google_gemini() to see all
options.

params Common model parameters, usually created by params().

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:

• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when

running at the console).
• all: echo all input and output.

Note this only affects the chat() method.

location Location, e.g. us-east1, me-central1, africa-south1.

project_id Project ID.

Value

A Chat object.

chat_groq 25

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(),
chat_cortex_analyst(), chat_databricks(), chat_deepseek(), chat_github(), chat_groq(),
chat_huggingface(), chat_mistral(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity(), chat_portkey()

Examples

Not run:
chat <- chat_google_gemini()
chat$chat("Tell me three jokes about statisticians")

End(Not run)

chat_groq Chat with a model hosted on Groq

Description

Sign up at https://groq.com.

This function is a lightweight wrapper around chat_openai() with the defaults tweaked for groq.

Known limitations:
groq does not currently support structured data extraction.

Usage

chat_groq(
system_prompt = NULL,
base_url = "https://api.groq.com/openai/v1",
api_key = groq_key(),
model = NULL,
seed = NULL,
api_args = list(),
echo = NULL

)

Arguments

system_prompt A system prompt to set the behavior of the assistant.

base_url The base URL to the endpoint; the default uses OpenAI.

api_key API key to use for authentication.
You generally should not supply this directly, but instead set the GROQ_API_KEY
environment variable. The best place to set this is in .Renviron, which you can
easily edit by calling usethis::edit_r_environ().

https://groq.com

26 chat_huggingface

model The model to use for the chat (defaults to "llama3-8b-8192"). We regularly
update the default, so we strongly recommend explicitly specifying a model for
anything other than casual use.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:

• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when

running at the console).
• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(),
chat_cortex_analyst(), chat_databricks(), chat_deepseek(), chat_github(), chat_google_gemini(),
chat_huggingface(), chat_mistral(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity(), chat_portkey()

Examples

Not run:
chat <- chat_groq()
chat$chat("Tell me three jokes about statisticians")

End(Not run)

chat_huggingface Chat with a model hosted on Hugging Face Serverless Inference API

Description

Hugging Face hosts a variety of open-source and proprietary AI models available via their Inference
API. To use the Hugging Face API, you must have an Access Token, which you can obtain from
your Hugging Face account (ensure that at least "Make calls to Inference Providers" and "Make
calls to your Inference Endpoints" is checked).

This function is a lightweight wrapper around chat_openai(), with the defaults adjusted for Hug-
ging Face.

Known limitations:

https://huggingface.co/
https://huggingface.co/settings/tokens

chat_huggingface 27

• Parameter support is hit or miss.
• Tool calling is currently broken in the API.
• While images are technically supported, I couldn’t find any models that returned useful re-

spones.
• Some models do not support the chat interface or parts of it, for example google/gemma-2-2b-it

does not support a system prompt. You will need to carefully choose the model.

So overall, not something we could recommend at the moment.

Usage

chat_huggingface(
system_prompt = NULL,
params = NULL,
api_key = hf_key(),
model = NULL,
api_args = list(),
echo = NULL

)

Arguments

system_prompt A system prompt to set the behavior of the assistant.

params Common model parameters, usually created by params().

api_key The API key to use for authentication. You generally should not supply this
directly, but instead set the HUGGINGFACE_API_KEY environment variable.

model The model to use for the chat (defaults to "meta-llama/Llama-3.1-8B-Instruct").
We regularly update the default, so we strongly recommend explicitly specifying
a model for anything other than casual use.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:

• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when

running at the console).
• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(),
chat_cortex_analyst(), chat_databricks(), chat_deepseek(), chat_github(), chat_google_gemini(),
chat_groq(), chat_mistral(), chat_ollama(), chat_openai(), chat_openrouter(), chat_perplexity(),
chat_portkey()

28 chat_mistral

Examples

Not run:
chat <- chat_huggingface()
chat$chat("Tell me three jokes about statisticians")

End(Not run)

chat_mistral Chat with a model hosted on Mistral’s La Platforme

Description

Get your API key from https://console.mistral.ai/api-keys.

Known limitations:
• Tool calling is unstable.
• Images require a model that supports images.

Usage

chat_mistral(
system_prompt = NULL,
params = NULL,
api_key = mistral_key(),
model = NULL,
seed = NULL,
api_args = list(),
echo = NULL

)

Arguments

system_prompt A system prompt to set the behavior of the assistant.

params Common model parameters, usually created by params().

api_key API key to use for authentication.
You generally should not supply this directly, but instead set the MISTRAL_API_KEY
environment variable. The best place to set this is in .Renviron, which you can
easily edit by calling usethis::edit_r_environ().

model The model to use for the chat (defaults to "mistral-large-latest"). We regularly
update the default, so we strongly recommend explicitly specifying a model for
anything other than casual use.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

https://console.mistral.ai/api-keys

chat_ollama 29

echo One of the following options:

• none: don’t emit any output (default when running in a function).

• output: echo text and tool-calling output as it streams in (default when
running at the console).

• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(),
chat_cortex_analyst(), chat_databricks(), chat_deepseek(), chat_github(), chat_google_gemini(),
chat_groq(), chat_huggingface(), chat_ollama(), chat_openai(), chat_openrouter(), chat_perplexity(),
chat_portkey()

Examples

Not run:
chat <- chat_mistral()
chat$chat("Tell me three jokes about statisticians")

End(Not run)

chat_ollama Chat with a local Ollama model

Description

To use chat_ollama() first download and install Ollama. Then install some models either from the
command line (e.g. with ollama pull llama3.1) or within R using ollamar (e.g. ollamar::pull("llama3.1")).

This function is a lightweight wrapper around chat_openai() with the defaults tweaked for ollama.

Known limitations:

• Tool calling is not supported with streaming (i.e. when echo is "text" or "all")

• Models can only use 2048 input tokens, and there’s no way to get them to use more, except
by creating a custom model with a different default.

• Tool calling generally seems quite weak, at least with the models I have tried it with.

https://ollama.com
https://hauselin.github.io/ollama-r/

30 chat_ollama

Usage

chat_ollama(
system_prompt = NULL,
base_url = "http://localhost:11434",
model,
seed = NULL,
api_args = list(),
echo = NULL,
api_key = NULL

)

models_ollama(base_url = "http://localhost:11434")

Arguments

system_prompt A system prompt to set the behavior of the assistant.

base_url The base URL to the endpoint; the default uses OpenAI.

model The model to use for the chat. Use models_ollama() to see all options.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:

• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when

running at the console).
• all: echo all input and output.

Note this only affects the chat() method.

api_key Ollama doesn’t require an API key for local usage and in most cases you do not
need to provide an api_key.
However, if you’re accessing an Ollama instance hosted behind a reverse proxy
or secured endpoint that enforces bearer-token authentication, you can set api_key
(or the OLLAMA_API_KEY environment variable).

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(),
chat_cortex_analyst(), chat_databricks(), chat_deepseek(), chat_github(), chat_google_gemini(),
chat_groq(), chat_huggingface(), chat_mistral(), chat_openai(), chat_openrouter(),
chat_perplexity(), chat_portkey()

chat_openai 31

Examples

Not run:
chat <- chat_ollama(model = "llama3.2")
chat$chat("Tell me three jokes about statisticians")

End(Not run)

chat_openai Chat with an OpenAI model

Description

OpenAI provides a number of chat-based models, mostly under the ChatGPT brand. Note that a
ChatGPT Plus membership does not grant access to the API. You will need to sign up for a developer
account (and pay for it) at the developer platform.

Usage

chat_openai(
system_prompt = NULL,
base_url = "https://api.openai.com/v1",
api_key = openai_key(),
model = NULL,
params = NULL,
seed = lifecycle::deprecated(),
api_args = list(),
echo = c("none", "output", "all")

)

models_openai(base_url = "https://api.openai.com/v1", api_key = openai_key())

Arguments

system_prompt A system prompt to set the behavior of the assistant.

base_url The base URL to the endpoint; the default uses OpenAI.

api_key API key to use for authentication.
You generally should not supply this directly, but instead set the OPENAI_API_KEY
environment variable. The best place to set this is in .Renviron, which you can
easily edit by calling usethis::edit_r_environ().

model The model to use for the chat (defaults to "gpt-4.1"). We regularly update the
default, so we strongly recommend explicitly specifying a model for anything
other than casual use. Use models_openai() to see all options.

params Common model parameters, usually created by params().

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

https://openai.com/
https://chat.openai.com/
https://platform.openai.com

32 chat_openrouter

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:

• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when

running at the console).
• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(),
chat_cortex_analyst(), chat_databricks(), chat_deepseek(), chat_github(), chat_google_gemini(),
chat_groq(), chat_huggingface(), chat_mistral(), chat_ollama(), chat_openrouter(),
chat_perplexity(), chat_portkey()

Examples

chat <- chat_openai()
chat$chat("

What is the difference between a tibble and a data frame?
Answer with a bulleted list

")

chat$chat("Tell me three funny jokes about statisticians")

chat_openrouter Chat with one of the many models hosted on OpenRouter

Description

Sign up at https://openrouter.ai.

Support for features depends on the underlying model that you use; see https://openrouter.ai/
models for details.

Usage

chat_openrouter(
system_prompt = NULL,
api_key = openrouter_key(),
model = NULL,
seed = NULL,

https://openrouter.ai
https://openrouter.ai/models
https://openrouter.ai/models

chat_openrouter 33

api_args = list(),
echo = c("none", "output", "all")

)

Arguments

system_prompt A system prompt to set the behavior of the assistant.

api_key API key to use for authentication.
You generally should not supply this directly, but instead set the OPENROUTER_API_KEY
environment variable. The best place to set this is in .Renviron, which you can
easily edit by calling usethis::edit_r_environ().

model The model to use for the chat (defaults to "gpt-4o"). We regularly update the
default, so we strongly recommend explicitly specifying a model for anything
other than casual use.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:

• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when

running at the console).
• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(),
chat_cortex_analyst(), chat_databricks(), chat_deepseek(), chat_github(), chat_google_gemini(),
chat_groq(), chat_huggingface(), chat_mistral(), chat_ollama(), chat_openai(), chat_perplexity(),
chat_portkey()

Examples

Not run:
chat <- chat_openrouter()
chat$chat("Tell me three jokes about statisticians")

End(Not run)

34 chat_perplexity

chat_perplexity Chat with a model hosted on perplexity.ai

Description

Sign up at https://www.perplexity.ai.

Perplexity AI is a platform for running LLMs that are capable of searching the web in real-time to
help them answer questions with information that may not have been available when the model was
trained.

This function is a lightweight wrapper around chat_openai() with the defaults tweaked for Per-
plexity AI.

Usage

chat_perplexity(
system_prompt = NULL,
base_url = "https://api.perplexity.ai/",
api_key = perplexity_key(),
model = NULL,
seed = NULL,
api_args = list(),
echo = NULL

)

Arguments

system_prompt A system prompt to set the behavior of the assistant.
base_url The base URL to the endpoint; the default uses OpenAI.
api_key API key to use for authentication.

You generally should not supply this directly, but instead set the PERPLEXITY_API_KEY
environment variable. The best place to set this is in .Renviron, which you can
easily edit by calling usethis::edit_r_environ().

model The model to use for the chat (defaults to "llama-3.1-sonar-small-128k-online").
We regularly update the default, so we strongly recommend explicitly specifying
a model for anything other than casual use.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:
• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when

running at the console).
• all: echo all input and output.

Note this only affects the chat() method.

https://www.perplexity.ai

chat_portkey 35

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(),
chat_cortex_analyst(), chat_databricks(), chat_deepseek(), chat_github(), chat_google_gemini(),
chat_groq(), chat_huggingface(), chat_mistral(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_portkey()

Examples

Not run:
chat <- chat_perplexity()
chat$chat("Tell me three jokes about statisticians")

End(Not run)

chat_portkey Chat with a model hosted on PortkeyAI

Description

PortkeyAI provides an interface (AI Gateway) to connect through its Universal API to a variety of
LLMs providers with a single endpoint.

Authentication:
API keys together with configurations of LLM providers are stored inside Portkey application.

Usage

chat_portkey(
system_prompt = NULL,
base_url = "https://api.portkey.ai/v1",
api_key = portkeyai_key(),
virtual_key = NULL,
model = NULL,
params = NULL,
api_args = list(),
echo = NULL

)

models_portkey(
base_url = "https://api.portkey.ai/v1",
api_key = portkeyai_key(),
virtual_key = NULL

)

https://portkey.ai/docs/product/ai-gateway/universal-api

36 chat_portkey

Arguments

system_prompt A system prompt to set the behavior of the assistant.

base_url The base URL to the endpoint; the default uses OpenAI.

api_key API key to use for authentication.

You generally should not supply this directly, but instead set the PORTKEY_API_KEY
environment variable. The best place to set this is in .Renviron, which you can
easily edit by calling usethis::edit_r_environ().

virtual_key A virtual identifier storing LLM provider’s API key. See documentation.

model The model to use for the chat (defaults to "gpt-4o"). We regularly update the
default, so we strongly recommend explicitly specifying a model for anything
other than casual use. Use models_openai() to see all options.

params Common model parameters, usually created by params().

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:

• none: don’t emit any output (default when running in a function).

• output: echo text and tool-calling output as it streams in (default when
running at the console).

• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

See Also

Other chatbots: chat_anthropic(), chat_aws_bedrock(), chat_azure_openai(), chat_cloudflare(),
chat_cortex_analyst(), chat_databricks(), chat_deepseek(), chat_github(), chat_google_gemini(),
chat_groq(), chat_huggingface(), chat_mistral(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity()

Examples

Not run:
chat <- chat_portkey(virtual_key = Sys.getenv("PORTKEY_VIRTUAL_KEY"))
chat$chat("Tell me three jokes about statisticians")

End(Not run)

https://portkey.ai/docs/product/ai-gateway/virtual-keys

chat_snowflake 37

chat_snowflake Chat with a model hosted on Snowflake

Description

The Snowflake provider allows you to interact with LLM models available through the Cortex LLM
REST API.

Authentication:
chat_snowflake() picks up the following ambient Snowflake credentials:

• A static OAuth token defined via the SNOWFLAKE_TOKEN environment variable.
• Key-pair authentication credentials defined via the SNOWFLAKE_USER and SNOWFLAKE_PRIVATE_KEY

(which can be a PEM-encoded private key or a path to one) environment variables.
• Posit Workbench-managed Snowflake credentials for the corresponding account.
• Viewer-based credentials on Posit Connect. Requires the connectcreds package.

Known limitations:
Note that Snowflake-hosted models do not support images or tool calling.
See chat_cortex_analyst() to chat with the Snowflake Cortex Analyst rather than a general-
purpose model.

Usage

chat_snowflake(
system_prompt = NULL,
account = snowflake_account(),
credentials = NULL,
model = NULL,
params = NULL,
api_args = list(),
echo = c("none", "output", "all")

)

Arguments

system_prompt A system prompt to set the behavior of the assistant.

account A Snowflake account identifier, e.g. "testorg-test_account". Defaults to
the value of the SNOWFLAKE_ACCOUNT environment variable.

credentials A list of authentication headers to pass into httr2::req_headers(), a function
that returns them when called, or NULL, the default, to use ambient credentials.

model The model to use for the chat (defaults to "claude-3-7-sonnet"). We regularly
update the default, so we strongly recommend explicitly specifying a model for
anything other than casual use.

params Common model parameters, usually created by params().

https://docs.snowflake.com/en/user-guide/snowflake-cortex/cortex-llm-rest-api
https://docs.snowflake.com/en/user-guide/snowflake-cortex/cortex-llm-rest-api
https://docs.snowflake.com/en/user-guide/admin-account-identifier

38 chat_vllm

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

echo One of the following options:

• none: don’t emit any output (default when running in a function).

• output: echo text and tool-calling output as it streams in (default when
running at the console).

• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

Examples

chat <- chat_snowflake()
chat$chat("Tell me a joke in the form of a SQL query.")

chat_vllm Chat with a model hosted by vLLM

Description

vLLM is an open source library that provides an efficient and convenient LLMs model server. You
can use chat_vllm() to connect to endpoints powered by vLLM.

Usage

chat_vllm(
base_url,
system_prompt = NULL,
model,
seed = NULL,
api_args = list(),
api_key = vllm_key(),
echo = NULL

)

models_vllm(base_url, api_key = vllm_key())

https://docs.vllm.ai/en/latest/

Content 39

Arguments

base_url The base URL to the endpoint; the default uses OpenAI.

system_prompt A system prompt to set the behavior of the assistant.

model The model to use for the chat. Use models_vllm() to see all options.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

api_key API key to use for authentication.
You generally should not supply this directly, but instead set the VLLM_API_KEY
environment variable. The best place to set this is in .Renviron, which you can
easily edit by calling usethis::edit_r_environ().

echo One of the following options:

• none: don’t emit any output (default when running in a function).
• output: echo text and tool-calling output as it streams in (default when

running at the console).
• all: echo all input and output.

Note this only affects the chat() method.

Value

A Chat object.

Examples

Not run:
chat <- chat_vllm("http://my-vllm.com")
chat$chat("Tell me three jokes about statisticians")

End(Not run)

Content Content types received from and sent to a chatbot

Description

Use these functions if you’re writing a package that extends ellmer and need to customise methods
for various types of content. For normal use, see content_image_url() and friends.

ellmer abstracts away differences in the way that different Providers represent various types of
content, allowing you to more easily write code that works with any chatbot. This set of classes
represents types of content that can be either sent to and received from a provider:

• ContentText: simple text (often in markdown format). This is the only type of content that
can be streamed live as it’s received.

40 Content

• ContentImageRemote and ContentImageInline: images, either as a pointer to a remote
URL or included inline in the object. See content_image_file() and friends for convenient
ways to construct these objects.

• ContentToolRequest: a request to perform a tool call (sent by the assistant).

• ContentToolResult: the result of calling the tool (sent by the user). This object is automat-
ically created from the value returned by calling the tool() function. Alternatively, expert
users can return a ContentToolResult from a tool() function to include additional data or
to customize the display of the result.

Usage

Content()

ContentText(text = stop("Required"))

ContentImage()

ContentImageRemote(url = stop("Required"), detail = "")

ContentImageInline(type = stop("Required"), data = NULL)

ContentToolRequest(
id = stop("Required"),
name = stop("Required"),
arguments = list(),
tool = NULL

)

ContentToolResult(value = NULL, error = NULL, extra = list(), request = NULL)

ContentThinking(thinking = stop("Required"), extra = list())

ContentPDF(type = stop("Required"), data = stop("Required"))

Arguments

text A single string.

url URL to a remote image.

detail Not currently used.

type MIME type of the image.

data Base64 encoded image data.

id Tool call id (used to associate a request and a result). Automatically managed
by ellmer.

name Function name

arguments Named list of arguments to call the function with.

contents_text 41

tool ellmer automatically matches a tool request to the tools defined for the chatbot.
If NULL, the request did not match a defined tool.

value The results of calling the tool function, if it succeeded.

error The error message, as a string, or the error condition thrown as a result of a
failure when calling the tool function. Must be NULL when the tool call is suc-
cessful.

extra Additional data.

request The ContentToolRequest associated with the tool result, automatically added by
ellmer when evaluating the tool call.

thinking The text of the thinking output.

Value

S7 objects that all inherit from Content

Examples

Content()
ContentText("Tell me a joke")
ContentImageRemote("https://www.r-project.org/Rlogo.png")
ContentToolRequest(id = "abc", name = "mean", arguments = list(x = 1:5))

contents_text Format contents into a textual representation

Description

[Experimental]
These generic functions can be use to convert Turn contents or Content objects into textual repre-
sentations.

• contents_text() is the most minimal and only includes ContentText objects in the output.

• contents_markdown() returns the text content (which it assumes to be markdown and does
not convert it) plus markdown representations of images and other content types.

• contents_html() returns the text content, converted from markdown to HTML with commonmark::markdown_html(),
plus HTML representations of images and other content types.

These content types will continue to grow and change as ellmer evolves to support more providers
and as providers add more content types.

Usage

contents_text(content, ...)

contents_html(content, ...)

contents_markdown(content, ...)

42 content_image_url

Arguments

content The Turn or Content object to be converted into text. contents_markdown()
also accepts Chat instances to turn the entire conversation history into markdown
text.

... Additional arguments passed to methods.

Value

A string of text, markdown or HTML.

Examples

turns <- list(
Turn("user", contents = list(

ContentText("What's this image?"),
content_image_url("https://placehold.co/200x200")

)),
Turn("assistant", "It's a placeholder image.")

)

lapply(turns, contents_text)
lapply(turns, contents_markdown)
if (rlang::is_installed("commonmark")) {

contents_html(turns[[1]])
}

content_image_url Encode images for chat input

Description

These functions are used to prepare image URLs and files for input to the chatbot. The content_image_url()
function is used to provide a URL to an image, while content_image_file() is used to provide
the image data itself.

Usage

content_image_url(url, detail = c("auto", "low", "high"))

content_image_file(path, content_type = "auto", resize = "low")

content_image_plot(width = 768, height = 768)

content_image_url 43

Arguments

url The URL of the image to include in the chat input. Can be a data: URL or a
regular URL. Valid image types are PNG, JPEG, WebP, and non-animated GIF.

detail The detail setting for this image. Can be "auto", "low", or "high".

path The path to the image file to include in the chat input. Valid file extensions are
.png, .jpeg, .jpg, .webp, and (non-animated) .gif.

content_type The content type of the image (e.g. image/png). If "auto", the content type is
inferred from the file extension.

resize If "low", resize images to fit within 512x512. If "high", resize to fit within
2000x768 or 768x2000. (See the OpenAI docs for more on why these specific
sizes are used.) If "none", do not resize.

You can also pass a custom string to resize the image to a specific size, e.g.
"200x200" to resize to 200x200 pixels while preserving aspect ratio. Append >
to resize only if the image is larger than the specified size, and ! to ignore aspect
ratio (e.g. "300x200>!").

All values other than none require the magick package.

width, height Width and height in pixels.

Value

An input object suitable for including in the ... parameter of the chat(), stream(), chat_async(),
or stream_async() methods.

Examples

chat <- chat_openai(echo = TRUE)
chat$chat(

"What do you see in these images?",
content_image_url("https://www.r-project.org/Rlogo.png"),
content_image_file(system.file("httr2.png", package = "ellmer"))

)

plot(waiting ~ eruptions, data = faithful)
chat <- chat_openai(echo = TRUE)
chat$chat(

"Describe this plot in one paragraph, as suitable for inclusion in
alt-text. You should briefly describe the plot type, the axes, and
2-5 major visual patterns.",
content_image_plot()

)

https://platform.openai.com/docs/guides/images/image-input-requirements
https://platform.openai.com/docs/guides/images/image-input-requirements

44 create_tool_def

content_pdf_file Encode PDFs content for chat input

Description

These functions are used to prepare PDFs as input to the chatbot. The content_pdf_url() function
is used to provide a URL to an PDF file, while content_pdf_file() is used to for local PDF files.

Not all providers support PDF input, so check the documentation for the provider you are using.

Usage

content_pdf_file(path)

content_pdf_url(url)

Arguments

path, url Path or URL to a PDF file.

Value

A ContentPDF object

create_tool_def Create metadata for a tool

Description

In order to use a function as a tool in a chat, you need to craft the right call to tool(). This
function helps you do that for documented functions by extracting the function’s R documentation
and creating a tool() call for you, using an LLM. It’s meant to be used interactively while writing
your code, not as part of your final code.

If the function has package documentation, that will be used. Otherwise, if the source code of the
function can be automatically detected, then the comments immediately preceding the function are
used (especially helpful if those are Roxygen comments). If neither are available, then just the
function signature is used.

Note that this function is inherently imperfect. It can’t handle all possible R functions, because not
all parameters are suitable for use in a tool call (for example, because they’re not serializable to
simple JSON objects). The documentation might not specify the expected shape of arguments to
the level of detail that would allow an exact JSON schema to be generated. Please be sure to review
the generated code before using it!

google_upload 45

Usage

create_tool_def(
topic,
chat = NULL,
model = deprecated(),
echo = interactive(),
verbose = FALSE

)

Arguments

topic A symbol or string literal naming the function to create metadata for. Can also
be an expression of the form pkg::fun.

chat A Chat object used to generate the output. If NULL (the default) uses chat_openai().

model lifecycle::badge("deprecated") Formally used for definining the model
used by the chat. Now supply chat instead.

echo Emit the registration code to the console. Defaults to TRUE in interactive ses-
sions.

verbose If TRUE, print the input we send to the LLM, which may be useful for debugging
unexpectedly poor results.

Value

A register_tool call that you can copy and paste into your code. Returned invisibly if echo is
TRUE.

Examples

Not run:
These are all equivalent
create_tool_def(rnorm)
create_tool_def(stats::rnorm)
create_tool_def("rnorm")
create_tool_def("rnorm", chat = chat_azure_openai())

End(Not run)

google_upload Upload a file to gemini

46 google_upload

Description

[Experimental]

This function uploads a file then waits for Gemini to finish processing it so that you can immediately
use it in a prompt. It’s experimental because it’s currently Gemini specific, and we expect other
providers to evolve similar feature in the future.

Uploaded files are automatically deleted after 2 days. Each file must be less than 2 GB and you can
upload a total of 20 GB. ellmer doesn’t currently provide a way to delete files early; please file an
issue if this would be useful for you.

Usage

google_upload(
path,
base_url = "https://generativelanguage.googleapis.com/v1beta/",
api_key = NULL,
mime_type = NULL

)

Arguments

path Path to a file to upload.

base_url The base URL to the endpoint; the default uses OpenAI.

api_key API key to use for authentication.
You generally should not supply this directly, but instead set the GOOGLE_API_KEY
environment variable. The best place to set this is in .Renviron, which you can
easily edit by calling usethis::edit_r_environ(). For Gemini, you can al-
ternatively set GEMINI_API_KEY.

mime_type Optionally, specify the mime type of the file. If not specified, will be guesses
from the file extension.

Value

A <ContentUploaded> object that can be passed to $chat().

Examples

Not run:
file <- google_upload("path/to/file.pdf")

chat <- chat_google_gemini()
chat$chat(file, "Give me a three paragraph summary of this PDF")

End(Not run)

https://github.com/tidyverse/ellmer/issues
https://github.com/tidyverse/ellmer/issues

interpolate 47

interpolate Helpers for interpolating data into prompts

Description

These functions are lightweight wrappers around glue that make it easier to interpolate dynamic
data into a static prompt:

• interpolate() works with a string.
• interpolate_file() works with a file.
• interpolate_package() works with a file in the insts/prompt directory of a package.

Compared to glue, dynamic values should be wrapped in {{ }}, making it easier to include R code
and JSON in your prompt.

Usage

interpolate(prompt, ..., .envir = parent.frame())

interpolate_file(path, ..., .envir = parent.frame())

interpolate_package(package, path, ..., .envir = parent.frame())

Arguments

prompt A prompt string. You should not generally expose this to the end user, since glue
interpolation makes it easy to run arbitrary code.

... Define additional temporary variables for substitution.

.envir Environment to evaluate ... expressions in. Used when wrapping in another
function. See vignette("wrappers", package = "glue") for more details.

path A path to a prompt file (often a .md).
package Package name.

Value

A {glue} string.

Examples

joke <- "You're a cool dude who loves to make jokes. Tell me a joke about {{topic}}."

You can supply valuese directly:
interpolate(joke, topic = "bananas")

Or allow interpolate to find them in the current environment:
topic <- "applies"
interpolate(joke)

https://glue.tidyverse.org/

48 parallel_chat

live_console Open a live chat application

Description

• live_console() lets you chat interactively in the console.

• live_browser() lets you chat interactively in a browser.

Note that these functions will mutate the input chat object as you chat because your turns will be
appended to the history.

Usage

live_console(chat, quiet = FALSE)

live_browser(chat, quiet = FALSE)

Arguments

chat A chat object created by chat_openai() or friends.

quiet If TRUE, suppresses the initial message that explains how to use the console.

Value

(Invisibly) The input chat.

Examples

Not run:
chat <- chat_anthropic()
live_console(chat)
live_browser(chat)

End(Not run)

parallel_chat Submit multiple chats in parallel

Description

[Experimental]
If you have multiple prompts, you can submit them in parallel. This is typically considerably faster
than submitting them in sequence, especially with Gemini and OpenAI.

If you’re using chat_openai() or chat_anthropic() and you’re willing to wait longer, you might
want to use batch_chat() instead, as it comes with a 50% discount in return for taking up to 24
hours.

parallel_chat 49

Usage

parallel_chat(chat, prompts, max_active = 10, rpm = 500)

parallel_chat_structured(
chat,
prompts,
type,
convert = TRUE,
include_tokens = FALSE,
include_cost = FALSE,
max_active = 10,
rpm = 500

)

Arguments

chat A base chat object.

prompts A vector created by interpolate() or a list of character vectors.

max_active The maximum number of simultaneous requests to send.
For chat_anthropic(), note that the number of active connections is limited
primarily by the output tokens per minute limit (OTPM) which is estimated
from the max_tokens parameter, which defaults to 4096. That means if your
usage tier limits you to 16,000 OTPM, you should either set max_active = 4
(16,000 / 4096) to decrease the number of active connections or use params()
in chat_anthropic() to decrease max_tokens.

rpm Maximum number of requests per minute.

type A type specification for the extracted data. Should be created with a type_()
function.

convert If TRUE, automatically convert from JSON lists to R data types using the schema.
This typically works best when type is type_object() as this will give you a
data frame with one column for each property. If FALSE, returns a list.

include_tokens If TRUE, and the result is a data frame, will add input_tokens and output_tokens
columns giving the total input and output tokens for each prompt.

include_cost If TRUE, and the result is a data frame, will add cost column giving the cost of
each prompt.

Value

For parallel_chat(), a list of Chat objects, one for each prompt. For parallel_chat_structured(),
a single structured data object with one element for each prompt. Typically, when type is an object,
this will will be a data frame with one row for each prompt, and one column for each property.

Examples

chat <- chat_openai()

Chat --

50 params

country <- c("Canada", "New Zealand", "Jamaica", "United States")
prompts <- interpolate("What's the capital of {{country}}?")
parallel_chat(chat, prompts)

Structured data ---
prompts <- list(

"I go by Alex. 42 years on this planet and counting.",
"Pleased to meet you! I'm Jamal, age 27.",
"They call me Li Wei. Nineteen years young.",
"Fatima here. Just celebrated my 35th birthday last week.",
"The name's Robert - 51 years old and proud of it.",
"Kwame here - just hit the big 5-0 this year."

)
type_person <- type_object(name = type_string(), age = type_number())
parallel_chat_structured(chat, prompts, type_person)

params Standard model parameters

Description

This helper function makes it easier to create a list of parameters used across many models. The
parameter names are automatically standardised and included in the correctly place in the API call.

Note that parameters that are not supported by a given provider will generate a warning, not an
error. This allows you to use the same set of parameters across multiple providers.

Usage

params(
temperature = NULL,
top_p = NULL,
top_k = NULL,
frequency_penalty = NULL,
presence_penalty = NULL,
seed = NULL,
max_tokens = NULL,
log_probs = NULL,
stop_sequences = NULL,
...

)

Arguments

temperature Temperature of the sampling distribution.

top_p The cumulative probability for token selection.

top_k The number of highest probability vocabulary tokens to keep.

Provider 51

frequency_penalty

Frequency penalty for generated tokens.
presence_penalty

Presence penalty for generated tokens.

seed Seed for random number generator.

max_tokens Maximum number of tokens to generate.

log_probs Include the log probabilities in the output?

stop_sequences A character vector of tokens to stop generation on.

... Additional named parameters to send to the provider.

Provider A chatbot provider

Description

A Provider captures the details of one chatbot service/API. This captures how the API works, not
the details of the underlying large language model. Different providers might offer the same (open
source) model behind a different API.

Usage

Provider(
name = stop("Required"),
model = stop("Required"),
base_url = stop("Required"),
params = list(),
extra_args = list()

)

Arguments

name Name of the provider.

model Name of the model.

base_url The base URL for the API.

params A list of standard parameters created by params().

extra_args Arbitrary extra arguments to be included in the request body.

Details

To add support for a new backend, you will need to subclass Provider (adding any additional fields
that your provider needs) and then implement the various generics that control the behavior of each
provider.

Value

An S7 Provider object.

52 tool

Examples

Provider(
name = "CoolModels",
model = "my_model",
base_url = "https://cool-models.com"

)

token_usage Report on token usage in the current session

Description

Call this function to find out the cumulative number of tokens that you have sent and recieved in the
current session. The price will be shown if known.

Usage

token_usage()

Value

A data frame

Examples

token_usage()

tool Define a tool

Description

Define an R function for use by a chatbot. The function will always be run in the current R instance.

Learn more in vignette("tool-calling").

Usage

tool(
.fun,
.description,
...,
.name = NULL,
.convert = TRUE,
.annotations = list()

)

tool 53

Arguments

.fun The function to be invoked when the tool is called. The return value of the
function is sent back to the chatbot.
Expert users can customize the tool result by returning a ContentToolResult
object.

.description A detailed description of what the function does. Generally, the more informa-
tion that you can provide here, the better.

... Name-type pairs that define the arguments accepted by the function. Each ele-
ment should be created by a type_*() function.

.name The name of the function.

.convert Should JSON inputs be automatically convert to their R data type equivalents?
Defaults to TRUE.

.annotations Additional properties that describe the tool and its behavior. Usually created
by tool_annotations(), where you can find a description of the annotation
properties recommended by the Model Context Protocol.

Value

An S7 ToolDef object.

See Also

Other tool calling helpers: tool_annotations(), tool_reject()

Examples

First define the metadata that the model uses to figure out when to
call the tool
tool_rnorm <- tool(

rnorm,
"Drawn numbers from a random normal distribution",
n = type_integer("The number of observations. Must be a positive integer."),
mean = type_number("The mean value of the distribution."),
sd = type_number("The standard deviation of the distribution. Must be a non-negative number."),
.annotations = tool_annotations(
title = "Draw Random Normal Numbers",
read_only_hint = TRUE,
open_world_hint = FALSE

)
)
chat <- chat_openai()
Then register it
chat$register_tool(tool_rnorm)

Then ask a question that needs it.
chat$chat("

Give me five numbers from a random normal distribution.
")

https://modelcontextprotocol.io/introduction

54 tool_annotations

Look at the chat history to see how tool calling works:
Assistant sends a tool request which is evaluated locally and
results are send back in a tool result.

tool_annotations Tool annotations

Description

Tool annotations are additional properties that, when passed to the .annotations argument of
tool(), provide additional information about the tool and its behavior. This information can be
used for display to users, for example in a Shiny app or another user interface.

The annotations in tool_annotations() are drawn from the Model Context Protocol and are con-
sidered hints. Tool authors should use these annotations to communicate tool properties, but users
should note that these annotations are not guaranteed.

Usage

tool_annotations(
title = NULL,
read_only_hint = NULL,
open_world_hint = NULL,
idempotent_hint = NULL,
destructive_hint = NULL,
...

)

Arguments

title A human-readable title for the tool.

read_only_hint If TRUE, the tool does not modify its environment.
open_world_hint

If TRUE, the tool may interact with an "open world" of external entities. If FALSE,
the tool’s domain of interaction is closed. For example, the world of a web
search tool is open, but the world of a memory tool is not.

idempotent_hint

If TRUE, calling the tool repeatedly with the same arguments will have no ad-
ditional effect on its environment. (Only meaningful when read_only_hint is
FALSE.)

destructive_hint

If TRUE, the tool may perform destructive updates to its environment, otherwise
it only performs additive updates. (Only meaningful when read_only_hint is
FALSE.)

... Additional named parameters to include in the tool annotations.

https://modelcontextprotocol.io/introduction

tool_reject 55

Value

A list of tool annotations.

See Also

Other tool calling helpers: tool(), tool_reject()

Examples

See ?tool() for a full example using this function.
We're creating a tool around R's `rnorm()` function to allow the chatbot to
generate random numbers from a normal distribution.
tool_rnorm <- tool(

rnorm,
Describe the tool function to the LLM
.description = "Drawn numbers from a random normal distribution",
Describe the parameters used by the tool function
n = type_integer("The number of observations. Must be a positive integer."),
mean = type_number("The mean value of the distribution."),
sd = type_number("The standard deviation of the distribution. Must be a non-negative number."),
Tool annotations optionally provide additional context to the LLM
.annotations = tool_annotations(
title = "Draw Random Normal Numbers",
read_only_hint = TRUE, # the tool does not modify any state
open_world_hint = FALSE # the tool does not interact with the outside world

)
)

tool_reject Reject a tool call

Description

Throws an error to reject a tool call. tool_reject() can be used within the tool function to
indicate that the tool call should not be processed. tool_reject() can also be called in an
Chat$on_tool_request() callback. When used in the callback, the tool call is rejected before
the tool function is invoked.

Here’s an example where utils::askYesNo() is used to ask the user for permission before access-
ing their current working directory. This happens directly in the tool function and is appropriate
when you write the tool definition and know exactly how it will be called.

chat <- chat_openai(model = "gpt-4.1-nano")

list_files <- function() {
allow_read <- utils::askYesNo(
"Would you like to allow access to your current directory?"

)

56 tool_reject

if (isTRUE(allow_read)) {
dir(pattern = "[.](r|R|csv)$")

} else {
tool_reject()

}
}

chat$register_tool(tool(
list_files,
"List files in the user's current directory"

))

chat$chat("What files are available in my current directory?")
#> [tool call] list_files()
#> Would you like to allow access to your current directory? (Yes/no/cancel) no
#> #> Error: Tool call rejected. The user has chosen to disallow the tool #' call.
#> It seems I am unable to access the files in your current directory right now.
#> If you can tell me what specific files you're looking for or if you can #' provide
#> the list, I can assist you further.

chat$chat("Try again.")
#> [tool call] list_files()
#> Would you like to allow access to your current directory? (Yes/no/cancel) yes
#> #> app.R
#> #> data.csv
#> The files available in your current directory are "app.R" and "data.csv".

You can achieve a similar experience with tools written by others by using a tool_request call-
back. In the next example, imagine the tool is provided by a third-party package. This example
implements a simple menu to ask the user for consent before running any tool.

packaged_list_files_tool <- tool(
function() dir(pattern = "[.](r|R|csv)$"),
"List files in the user's current directory"

)

chat <- chat_openai(model = "gpt-4.1-nano")
chat$register_tool(packaged_list_files_tool)

always_allowed <- c()

ContentToolRequest
chat$on_tool_request(function(request) {
if (request@name %in% always_allowed) return()

answer <- utils::menu(
title = sprintf("Allow tool `%s()` to run?", request@name),
choices = c("Always", "Once", "No"),
graphics = FALSE

Turn 57

)

if (answer == 1) {
always_allowed <<- append(always_allowed, request@name)

} else if (answer %in% c(0, 3)) {
tool_reject()

}
})

Try choosing different answers to the menu each time
chat$chat("What files are available in my current directory?")
chat$chat("How about now?")
chat$chat("And again now?")

Usage

tool_reject(reason = "The user has chosen to disallow the tool call.")

Arguments

reason A character string describing the reason for rejecting the tool call.

Value

Throws an error of class ellmer_tool_reject with the provided reason.

See Also

Other tool calling helpers: tool(), tool_annotations()

Turn A user or assistant turn

Description

Every conversation with a chatbot consists of pairs of user and assistant turns, corresponding to an
HTTP request and response. These turns are represented by the Turn object, which contains a list
of Contents representing the individual messages within the turn. These might be text, images, tool
requests (assistant only), or tool responses (user only).

Note that a call to $chat() and related functions may result in multiple user-assistant turn cy-
cles. For example, if you have registered tools, ellmer will automatically handle the tool call-
ing loop, which may result in any number of additional cycles. Learn more about tool calling in
vignette("tool-calling").

Usage

Turn(role, contents = list(), json = list(), tokens = c(0, 0))

58 Type

Arguments

role Either "user", "assistant", or "system".

contents A list of Content objects.

json The serialized JSON corresponding to the underlying data of the turns. Cur-
rently only provided for assistant.
This is useful if there’s information returned by the provider that ellmer doesn’t
otherwise expose.

tokens A numeric vector of length 2 representing the number of input and output tokens
(respectively) used in this turn. Currently only recorded for assistant turns.

Value

An S7 Turn object

Examples

Turn(role = "user", contents = list(ContentText("Hello, world!")))

Type Type definitions for function calling and structured data extraction.

Description

These S7 classes are provided for use by package devlopers who are extending ellmer. In every day
use, use type_boolean() and friends.

Usage

TypeBasic(description = NULL, required = TRUE, type = stop("Required"))

TypeEnum(description = NULL, required = TRUE, values = character(0))

TypeArray(description = NULL, required = TRUE, items = Type())

TypeJsonSchema(description = NULL, required = TRUE, json = list())

TypeObject(
description = NULL,
required = TRUE,
properties = list(),
additional_properties = TRUE

)

type_boolean 59

Arguments

description The purpose of the component. This is used by the LLM to determine what
values to pass to the tool or what values to extract in the structured data, so the
more detail that you can provide here, the better.

required Is the component or argument required?
In type descriptions for structured data, if required = FALSE and the component
does not exist in the data, the LLM may hallucinate a value. Only applies when
the element is nested inside of a type_object().
In tool definitions, required = TRUE signals that the LLM should always pro-
vide a value. Arguments with required = FALSE should have a default value in
the tool function’s definition. If the LLM does not provide a value, the default
value will be used.

type Basic type name. Must be one of boolean, integer, number, or string.

values Character vector of permitted values.

items The type of the array items. Can be created by any of the type_ function.

json A JSON schema object as a list.

properties Named list of properties stored inside the object. Each element should be an S7
Type object.‘

additional_properties

Can the object have arbitrary additional properties that are not explicitly listed?
Only supported by Claude.

Value

S7 objects inheriting from Type

Examples

TypeBasic(type = "boolean")
TypeArray(items = TypeBasic(type = "boolean"))

type_boolean Type specifications

Description

These functions specify object types in a way that chatbots understand and are used for tool calling
and structured data extraction. Their names are based on the JSON schema, which is what the APIs
expect behind the scenes. The translation from R concepts to these types is fairly straightforward.

• type_boolean(), type_integer(), type_number(), and type_string() each represent
scalars. These are equivalent to length-1 logical, integer, double, and character vectors (re-
spectively).

• type_enum() is equivalent to a length-1 factor; it is a string that can only take the specified
values.

https://json-schema.org

60 type_boolean

• type_array() is equivalent to a vector in R. You can use it to represent an atomic vector: e.g.
type_array(items = type_boolean()) is equivalent to a logical vector and type_array(items
= type_string()) is equivalent to a character vector). You can also use it to represent a list
of more complicated types where every element is the same type (R has no base equivalent to
this), e.g. type_array(items = type_array(items = type_string())) represents a list of
character vectors.

• type_object() is equivalent to a named list in R, but where every element must have the spec-
ified type. For example, type_object(a = type_string(), b = type_array(type_integer()))
is equivalent to a list with an element called a that is a string and an element called b that is
an integer vector.

• type_from_schema() allows you to specify the full schema that you want to get back from
the LLM as a JSON schema. This is useful if you have a pre-defined schema that you want to
use directly without manually creating the type using the type_*() functions. You can point
to a file with the path argument or provide a JSON string with text. The schema must be a
valid JSON schema object.

Usage

type_boolean(description = NULL, required = TRUE)

type_integer(description = NULL, required = TRUE)

type_number(description = NULL, required = TRUE)

type_string(description = NULL, required = TRUE)

type_enum(description = NULL, values, required = TRUE)

type_array(description = NULL, items, required = TRUE)

type_object(
.description = NULL,
...,
.required = TRUE,
.additional_properties = FALSE

)

type_from_schema(text, path)

Arguments

description, .description
The purpose of the component. This is used by the LLM to determine what
values to pass to the tool or what values to extract in the structured data, so the
more detail that you can provide here, the better.

required, .required
Is the component or argument required?

type_boolean 61

In type descriptions for structured data, if required = FALSE and the component
does not exist in the data, the LLM may hallucinate a value. Only applies when
the element is nested inside of a type_object().
In tool definitions, required = TRUE signals that the LLM should always pro-
vide a value. Arguments with required = FALSE should have a default value in
the tool function’s definition. If the LLM does not provide a value, the default
value will be used.

values Character vector of permitted values.

items The type of the array items. Can be created by any of the type_ function.

... Name-type pairs defineing the components that the object must possess.

.additional_properties

Can the object have arbitrary additional properties that are not explicitly listed?
Only supported by Claude.

text A JSON string.

path A file path to a JSON file.

Examples

An integer vector
type_array(items = type_integer())

The closest equivalent to a data frame is an array of objects
type_array(items = type_object(

x = type_boolean(),
y = type_string(),
z = type_number()

))

There's no specific type for dates, but you use a string with the
requested format in the description (it's not gauranteed that you'll
get this format back, but you should most of the time)
type_string("The creation date, in YYYY-MM-DD format.")
type_string("The update date, in dd/mm/yyyy format.")

Index

∗ chatbots
chat_anthropic, 11
chat_aws_bedrock, 12
chat_azure_openai, 14
chat_cloudflare, 15
chat_cortex_analyst, 17
chat_databricks, 18
chat_deepseek, 20
chat_github, 22
chat_google_gemini, 23
chat_groq, 25
chat_huggingface, 26
chat_mistral, 28
chat_ollama, 29
chat_openai, 31
chat_openrouter, 32
chat_perplexity, 34
chat_portkey, 35

∗ tool calling helpers
tool, 52
tool_annotations, 54
tool_reject, 55

base::I(), 9
batch_chat, 3
batch_chat(), 48
batch_chat_completed (batch_chat), 3
batch_chat_structured (batch_chat), 3

Chat, 5, 12, 13, 15, 16, 18, 20, 21, 23, 24, 26,
27, 29, 30, 32, 33, 35, 36, 38, 39, 42,
49

chat_anthropic, 11, 13, 15, 16, 18, 20, 21,
23, 25–27, 29, 30, 32, 33, 35, 36

chat_anthropic(), 3, 48, 49
chat_aws_bedrock, 12, 12, 15, 16, 18, 20, 21,

23, 25–27, 29, 30, 32, 33, 35, 36
chat_azure_openai, 12, 13, 14, 16, 18, 20,

21, 23, 25–27, 29, 30, 32, 33, 35, 36

chat_cloudflare, 12, 13, 15, 15, 18, 20, 21,
23, 25–27, 29, 30, 32, 33, 35, 36

chat_cortex_analyst, 12, 13, 15, 16, 17, 20,
21, 23, 25–27, 29, 30, 32, 33, 35, 36

chat_cortex_analyst(), 37
chat_databricks, 12, 13, 15, 16, 18, 18, 21,

23, 25–27, 29, 30, 32, 33, 35, 36
chat_deepseek, 12, 13, 15, 16, 18, 20, 20, 23,

25–27, 29, 30, 32, 33, 35, 36
chat_github, 12, 13, 15, 16, 18, 20, 21, 22,

25–27, 29, 30, 32, 33, 35, 36
chat_google_gemini, 12, 13, 15, 16, 18, 20,

21, 23, 23, 26, 27, 29, 30, 32, 33, 35,
36

chat_google_vertex
(chat_google_gemini), 23

chat_groq, 12, 13, 15, 16, 18, 20, 21, 23, 25,
25, 27, 29, 30, 32, 33, 35, 36

chat_huggingface, 12, 13, 15, 16, 18, 20, 21,
23, 25, 26, 26, 29, 30, 32, 33, 35, 36

chat_mistral, 12, 13, 15, 16, 18, 20, 21, 23,
25–27, 28, 30, 32, 33, 35, 36

chat_ollama, 12, 13, 15, 16, 18, 20, 21, 23,
25–27, 29, 29, 32, 33, 35, 36

chat_openai, 12, 13, 15, 16, 18, 20, 21, 23,
25–27, 29, 30, 31, 33, 35, 36

chat_openai(), 3, 5, 22, 25, 26, 29, 34, 45, 48
chat_openrouter, 12, 13, 15, 16, 18, 20, 21,

23, 25–27, 29, 30, 32, 32, 35, 36
chat_perplexity, 12, 13, 15, 16, 18, 20, 21,

23, 25–27, 29, 30, 32, 33, 34, 36
chat_portkey, 12, 13, 15, 16, 18, 20, 21, 23,

25–27, 29, 30, 32, 33, 35, 35
chat_snowflake, 37
chat_snowflake(), 17
chat_vllm, 38
commonmark::markdown_html(), 41
Content, 9, 39, 41, 42, 57, 58
content_image_file (content_image_url),

62

INDEX 63

42
content_image_file(), 8, 40
content_image_plot (content_image_url),

42
content_image_url, 42
content_image_url(), 8, 39
content_pdf_file, 44
content_pdf_url (content_pdf_file), 44
ContentImage (Content), 39
ContentImageInline (Content), 39
ContentImageRemote (Content), 39
ContentPDF (Content), 39
contents_html (contents_text), 41
contents_markdown (contents_text), 41
contents_text, 41
ContentText, 41
ContentText (Content), 39
ContentThinking (Content), 39
ContentToolRequest, 41
ContentToolRequest (Content), 39
ContentToolResult, 53
ContentToolResult (Content), 39
create_tool_def, 44

google_upload, 45
google_upload(), 23

httr2::req_headers(), 15, 18, 37

interpolate, 47
interpolate(), 4, 49
interpolate_file (interpolate), 47
interpolate_package (interpolate), 47

live_browser (live_console), 48
live_console, 48

models_anthropic (chat_anthropic), 11
models_aws_bedrock (chat_aws_bedrock),

12
models_google_gemini

(chat_google_gemini), 23
models_google_vertex

(chat_google_gemini), 23
models_ollama (chat_ollama), 29
models_openai (chat_openai), 31
models_portkey (chat_portkey), 35
models_vllm (chat_vllm), 38
modifyList(), 11, 15, 16, 18, 19, 21, 22, 24,

26–28, 30, 32–34, 36, 38, 39

parallel_chat, 48
parallel_chat(), 3
parallel_chat_structured

(parallel_chat), 48
params, 50
params(), 11, 14, 16, 24, 27, 28, 31, 36, 37,

49, 51
Provider, 5, 39, 51

token_usage, 52
tool, 52, 55, 57
tool(), 9, 10, 40, 44, 54
tool_annotations, 53, 54, 57
tool_annotations(), 53
tool_reject, 53, 55, 55
Turn, 5–7, 41, 42, 57
Type, 58
type_(), 4, 8, 49
type_*(), 53
type_array (type_boolean), 59
type_boolean, 59
type_boolean(), 58
type_enum (type_boolean), 59
type_from_schema (type_boolean), 59
type_integer (type_boolean), 59
type_number (type_boolean), 59
type_object (type_boolean), 59
type_object(), 4, 49
type_string (type_boolean), 59
TypeArray (Type), 58
TypeBasic (Type), 58
TypeEnum (Type), 58
TypeJsonSchema (Type), 58
TypeObject (Type), 58

	batch_chat
	Chat
	chat_anthropic
	chat_aws_bedrock
	chat_azure_openai
	chat_cloudflare
	chat_cortex_analyst
	chat_databricks
	chat_deepseek
	chat_github
	chat_google_gemini
	chat_groq
	chat_huggingface
	chat_mistral
	chat_ollama
	chat_openai
	chat_openrouter
	chat_perplexity
	chat_portkey
	chat_snowflake
	chat_vllm
	Content
	contents_text
	content_image_url
	content_pdf_file
	create_tool_def
	google_upload
	interpolate
	live_console
	parallel_chat
	params
	Provider
	token_usage
	tool
	tool_annotations
	tool_reject
	Turn
	Type
	type_boolean
	Index

