Type: | Package |
Title: | Generated Probability Distribution Models |
Version: | 2.0 |
Date: | 2019-01-30 |
Author: | Shaiful Anuar Abu Bakar |
Maintainer: | Shaiful Anuar Abu Bakar <saab@um.edu.my> |
Description: | Computes the probability density function (pdf), cumulative distribution function (cdf), quantile function (qf) and generates random values (rg) for the following general models : mixture models, composite models, folded models, skewed symmetric models and arc tan models. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | no |
Packaged: | 2019-01-31 08:50:24 UTC; saab |
Repository: | CRAN |
Date/Publication: | 2019-01-31 09:33:20 UTC |
Generated Probability Distribution Models
Description
Computes the probability density function (pdf), cumulative distribution function (cdf), quantile function (qf) and generates random values (rg) for the following general models : mixture models, composite models, folded models, skewed symmetric models and arc tan models.
Details
Package: | gendist |
Type: | Package |
Version: | 2.0 |
Date: | 2019-01-30 |
License: | GPL (>=2) |
All the models use parent distribution(s) and thus flexible to incorporate many exisiting probability distributions.
Author(s)
Shaiful Anuar Abu Bakar
Maintainer: Shaiful Anuar Abu Bakar <saab@um.edu.my>
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Gomez-Deniz, E., & Calderin-Ojeda, E. Modelling insurance data with the pareto arctan distribution. ASTIN Bulletin, 1-22.
Cooray, K., & Ananda, M. M. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005(5), 321-334.
Scollnik, D. P. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20-33.
Nadarajah, S., & Bakar, S. A. A. (2014). New composite models for the Danish fire insurance data. Scandinavian Actuarial Journal, 2014(2), 180-187.
Bakar, S. A., Hamzah, N. A., Maghsoudi, M., & Nadarajah, S. (2015). Modeling loss data using composite models. Insurance: Mathematics and Economics, 61, 146-154.
Brazauskas, V., & Kleefeld, A. (2011). Folded and log-folded-t distributions as models for insurance loss data. Scandinavian Actuarial Journal, 2011(1), 59-74.
Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London. A, 71-110.
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal of statistics, 171-178.
Probabilty density function of arc tan model.
Description
Computes pdf of the arc tan model.
Usage
darctan(x, alpha, spec, arg, log = FALSE)
Arguments
x |
scalar or vector of values to compute the pdf. |
alpha |
the value of |
spec |
a character string specifying the parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg |
list of arguments/parameters of the parent distribution. |
log |
logical; if |
Details
The pdf of arc tan model with parameter \alpha
has a general form of:
f(x) = \frac{1}{\arctan(\alpha)} \frac{\alpha g(x)}{1 + (\alpha (1-G(x)))^{2}}
for a\leq x\leq b
where a
and b
follow the support of g(x)
. \arctan
denote the inverse function of tangent. g(x)
and G(x)
are the pdf and cdf of parent distribution, respectively. Note also that \alpha>0
.
Value
An object of the same length as x
, giving the pdf values computed at x
.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Gomez-Deniz, E., & Calderin-Ojeda, E. Modelling insurance data with the pareto arctan distribution. ASTIN Bulletin, 1-22.
Examples
x=runif(10, min=0, max=1)
y=darctan(x, alpha=0.5, spec="lnorm", arg=list(meanlog=1,sdlog=2) )
Probabilty density function of composite model.
Description
Computes pdf of the composite model.
Usage
dcomposite(x, spec1, arg1, spec2, arg2, initial = 1, log = FALSE)
Arguments
x |
scalar or vector of values to compute the pdf. |
spec1 |
a character string specifying the head parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the head parent distribution. |
spec2 |
a character string specifying the tail parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the tail parent distribution. |
initial |
initial values of the threshold, |
log |
logical; if |
Details
The pdf of composite model has a general form of:
f(x) =
\frac{1}{1+\phi} f_{1}^{*}(x), \mbox{ if} \quad x \leq \theta,
= \frac{\phi}{1+\phi} f_{2}^{*}(x), \mbox{ if} \quad x > \theta,
whereby \phi
is the weight component, \theta
is the threshold and f_{i}^{*}(x)
for i=1,2
are the truncated pdfs correspond to head and tail parent distributions defined by
f_{1}^{*}(x) = \frac{f_{1}(x)}{F_{1}(\theta)}
and
f_{2}^{*}(x) = \frac{f_{2}(x)}{1-F_{2}(\theta)}
respectively.
Value
An object of the same length as x
, giving the pdf values computed at x
.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Cooray, K., & Ananda, M. M. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005(5), 321-334.
Scollnik, D. P. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20-33.
Nadarajah, S., & Bakar, S. A. A. (2014). New composite models for the Danish fire insurance data. Scandinavian Actuarial Journal, 2014(2), 180-187.
Bakar, S. A., Hamzah, N. A., Maghsoudi, M., & Nadarajah, S. (2015). Modeling loss data using composite models. Insurance: Mathematics and Economics, 61, 146-154.
Examples
x=runif(10, min=0, max=1)
y=dcomposite(x, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp",
arg2=list(rate=0.5) )
Probabilty density function of folded model.
Description
Computes pdf of the folded model.
Usage
dfolded(x, spec, arg, log = FALSE)
Arguments
x |
scale or vector of values to compute the pdf. |
spec |
a character string specifying the parent distribution (for example, "norm" if the parent disstribution correspond to the normal). |
arg |
list of arguments/parameters of the parent distribution. |
log |
logical; if |
Details
The pdf of folded model has a general form of:
f(x) = g(x) + g(-x) \quad x>0
where G(x)
is the cdf of parent distribution.
Value
An object of the same length as x
, giving the pdf values computed at x
.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Brazauskas, V., & Kleefeld, A. (2011). Folded and log-folded-t distributions as models for insurance loss data. Scandinavian Actuarial Journal, 2011(1), 59-74.
Examples
x=runif(10, min=0, max=1)
y=dfolded(x, spec="norm", arg=list(mean=1,sd=2) )
Probabilty density function of mixture model.
Description
Computes pdf of the mixture model.
Usage
dmixt(x, phi, spec1, arg1, spec2, arg2, log = FALSE)
Arguments
x |
scalar or vector of values to compute the pdf. |
phi |
the value of |
spec1 |
a character string specifying the first parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the first parent distribution. |
spec2 |
a character string specifying the second parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the second parent distribution. |
log |
logical; if |
Details
The pdf of mixture model with parameter phi
has a general form of:
f(x) = \frac{1}{1+\phi} \left( g_{1}(x) + \phi g_{2}(x)\right)
where x
follows the support of parent distributions, \phi
is the weight component and g_{i}(x)
for i=1,2
are the pdfs of first and second parent distributions, respectively.
Value
An object of the same length as x
, giving the pdf values computed at x
.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London. A, 71-110.
Examples
x=runif(10, min=0, max=1)
y=dmixt(x, phi=0.5, spec1="lnorm", arg1=list(meanlog=1,sdlog=2), spec2="exp",
arg2=list(rate=2) )
Probabilty density function of skewed symmetric model.
Description
Computes pdf of the skewed symmetric model.
Usage
dskew(x, spec1, arg1, spec2, arg2, log = FALSE)
Arguments
x |
scalar or vector of values to compute the pdf. |
spec1 |
a character string specifying the parent distribution |
arg1 |
list of arguments/parameters of the parent distribution |
spec2 |
a character string specifying the parent distribution |
arg2 |
list of arguments/parameters of the parent distribution |
log |
logical; if |
Details
The pdf of skewed symmetric model has a general form of:
f(x) = 2h(x)G(x), \quad -\infty < x < \infty
where h(x)
and G(x)
are the pdf and cdf of parent distributions, respectively.
Value
An object of the same length as x
, giving the pdf values computed at x
.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal of statistics, 171-178.
Examples
x=runif(10, min=0, max=1)
y=dskew(x, spec1="norm", arg1=list(mean=0,sd=1), spec2="logis",
arg2=list(location=0,scale=2) )
Cumulative distribution function of arc tan model.
Description
Computes cdf of the arc tan model.
Usage
parctan(q, alpha, spec, arg, lower.tail = TRUE, log.p = FALSE)
Arguments
q |
scalar or vector of values to compute the cdf. |
alpha |
the value of |
spec |
a character string specifying the parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg |
list of arguments/parameters of the parent distribution. |
lower.tail |
logical; if |
log.p |
logical; if |
Details
The cdf of arc tan model with parameter \alpha
has a general form of:
F(q) = 1- \frac{\arctan(\alpha (1-G(q)) )}{\arctan(\alpha)}
for a\leq x\leq b
where a
and b
follow the support of g(q)
. \arctan
denote the inverse function of tangent. g(q)
and G(q)
are the pdf and cdf of parent distribution, respectively. Note also that \alpha>0
.
Value
An object of the same length as q
, giving the cdf values computed at q
.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Gomez-Deniz, E., & Calderin-Ojeda, E. Modelling insurance data with the pareto arctan distribution. ASTIN Bulletin, 1-22.
Examples
x=runif(10, min=0, max=1)
y=parctan(x, alpha=0.5, spec="lnorm", arg=list(meanlog=1,sdlog=2) )
Cumulative distribution function of composite model.
Description
Computes cdf of the composite model.
Usage
pcomposite(q, spec1, arg1, spec2, arg2, initial = 1, lower.tail = TRUE, log.p = FALSE)
Arguments
q |
scalar or vector of values to compute the cdf. |
spec1 |
a character string specifying the head parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the head parent distribution. |
spec2 |
a character string specifying the tail parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the tail parent distribution. |
initial |
initial values of the threshold, |
lower.tail |
logical; if |
log.p |
logical; if |
Details
The cdf of composite model has a general form of:
F(x) =
\frac{1}{1+\phi} \frac{F_{1}(x)}{F_{1}(\theta)} \mbox{ if } \quad x \leq \theta,
= \frac{1}{1+\phi} \left( 1 + \phi \frac{F_{2}(x)-F_{2}(\theta)}{1-F_{2}(\theta)} \right) \mbox{ if } \quad x > \theta,
whereby \phi
is the weight component, \theta
is the threshold and F_{i}(x)
for i=1,2
are the cdfs correspond to head and tail parent distributions, respectively.
Value
An object of the same length as q
, giving the cdf values computed at q
.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Cooray, K., & Ananda, M. M. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005(5), 321-334.
Scollnik, D. P. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20-33.
Nadarajah, S., & Bakar, S. A. A. (2014). New composite models for the Danish fire insurance data. Scandinavian Actuarial Journal, 2014(2), 180-187.
Bakar, S. A., Hamzah, N. A., Maghsoudi, M., & Nadarajah, S. (2015). Modeling loss data using composite models. Insurance: Mathematics and Economics, 61, 146-154.
Examples
x=runif(10, min=0, max=1)
y=pcomposite(x, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp",
arg2=list(rate=0.5) )
Cumulative distribution function of folded model.
Description
Computes cdf of the folded model.
Usage
pfolded(q, spec, arg, lower.tail = TRUE, log.p = FALSE)
Arguments
q |
scale or vector of values to compute the cdf. |
spec |
a character string specifying the parent distribution (for example, "norm" if the parent distribution correspond to the normal). |
arg |
list of arguments/parameters of the parent distribution. |
lower.tail |
logical; if |
log.p |
logical; if |
Details
The cdf of folded model has a general form of:
F(x) = G(x) - G(-x) \quad x>0
where G(x)
is the cdf of parent distribution.
Value
An object of the same length as q
, giving the cdf values computed at q
.
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Brazauskas, V., & Kleefeld, A. (2011). Folded and log-folded-t distributions as models for insurance loss data. Scandinavian Actuarial Journal, 2011(1), 59-74.
Examples
x=runif(10, min=0, max=1)
y=pfolded(x, spec="norm", arg=list(mean=1,sd=2) )
Cumulative distribution function of mixture model.
Description
Computes cdf of the mixture model.
Usage
pmixt(q, phi, spec1, arg1, spec2, arg2, lower.tail = TRUE, log.p = FALSE)
Arguments
q |
scalar or vector of values to compute the cdf. |
phi |
the value of |
spec1 |
a character string specifying the first parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the first parent distribution. |
spec2 |
a character string specifying the second parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the second parent distribution. |
lower.tail |
logical; if |
log.p |
logical; if |
Details
The cdf of mixture model has a general form of:
F(x) = \\frac{1}{1+\phi} \left(G_{1}(x) + \phi G_{2}(x) \right)
where x
follows the support of parent distributions, \phi
is the weight component and G_{i}(x)
for i=1,2
are the cdfs of first and second parent distributions, respectively.
Value
An object of the same length as q
, giving the cdf values computed at q
.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London. A, 71-110.
Examples
x=runif(10, min=0, max=1)
y=pmixt(x, phi=0.5, spec1="lnorm", arg1=list(meanlog=1,sdlog=2), spec2="exp",
arg2=list(rate=2) )
Cumulative distribution function of skewed symmetric model.
Description
Computes cdf of the skewed symmetric model.
Usage
pskew(q, spec1, arg1, spec2, arg2, lower.tail = TRUE, log.p = FALSE)
Arguments
q |
scale or vector of values to compute the cdf. |
spec1 |
a character string specifying the parent distribution |
arg1 |
list of arguments/parameters of the parent distribution |
spec2 |
a character string specifying the parent distribution |
arg2 |
list of arguments/parameters of the parent distribution |
lower.tail |
logical; if |
log.p |
logical; if |
Details
The cdf of skewed symmetric model has a general form of:
F(x) = \int_{-\infty}^{x} 2 h(y) G(y) dy, \quad -\infty < x < \infty
where h(x)
and G(x)
are the pdf and cdf of parent distributions, respectively.
Value
An object of the same length as q
, giving the cdf values computed at q
.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal of statistics, 171-178.
Examples
x=runif(10, min=0, max=1)
y=pskew(x, spec1="norm", arg1=list(mean=0,sd=1), spec2="logis",
arg2=list(location=0,scale=2) )
Quantile function of arc tan model.
Description
Computes qf of the arc tan model.
Usage
qarctan(p, alpha, spec, arg, lower.tail = TRUE, log.p = FALSE)
Arguments
p |
scalar or vector of probabilities to compute the qf. |
alpha |
the value of |
spec |
a character string specifying the parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg |
list of arguments/parameters of the parent distribution. |
lower.tail |
logical; if |
log.p |
logical; if |
Details
The qf of arc tan model with parameter \alpha
has a general form of:
Q(p) = G^{-1}\left(1-\frac{1}{\alpha} \tan( (1-p)\arctan(\alpha) )\right)
for a\leq x\leq b
where a
and b
follow the support of G(x)
. \arctan
denote the inverse function of tangent and G^{-1}
is the inverse cdf of parent distribution, respectively. Note also that \alpha>0
.
Value
An object of the same length as p
, giving the qf values computed at p
.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Gomez-Deniz, E., & Calderin-Ojeda, E. Modelling insurance data with the pareto arctan distribution. ASTIN Bulletin, 1-22.
Examples
x=runif(10, min=0, max=1)
y=qarctan(x, alpha=0.5, spec="lnorm", arg=list(meanlog=1,sdlog=2) )
Quantile function of composite model.
Description
Computes qf of the composite model.
Usage
qcomposite(p, spec1, arg1, spec2, arg2, initial = 1, lower.tail = TRUE, log.p = FALSE)
Arguments
p |
scalar or vector of probabilities to compute the qf. |
spec1 |
a character string specifying the head parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the head parent distribution. |
spec2 |
a character string specifying the tail parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the tail parent distribution. |
initial |
initial values of the threshold, |
lower.tail |
logical; if |
log.p |
logical; if |
Details
The qf of composite model has a general form of:
Q(p) =
Q_{1}(p(1+\phi)F_{1}(\theta)) \mbox{ if } \quad p \leq \frac{1}{1+\phi},
= Q_{2} \left( F_{2}(\theta) + (1-F_{2}(\theta)) \left( \frac{p(1+\phi)-1}{\phi} \right)\right) \mbox{ if } \quad p > \frac{1}{1+\phi}
whereby \phi
is the weight component, \theta
is the threshold and F_{i}(x)
for i=1,2
are the qfs correspond to head and tail parent distributions, respectively.
Value
An object of the same length as p
, giving the qf values computed at p
.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Cooray, K., & Ananda, M. M. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005(5), 321-334.
Scollnik, D. P. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20-33.
Nadarajah, S., & Bakar, S. A. A. (2014). New composite models for the Danish fire insurance data. Scandinavian Actuarial Journal, 2014(2), 180-187.
Bakar, S. A., Hamzah, N. A., Maghsoudi, M., & Nadarajah, S. (2015). Modeling loss data using composite models. Insurance: Mathematics and Economics, 61, 146-154.
Examples
x=runif(10, min=0, max=1)
y=qcomposite(x, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp",
arg2=list(rate=0.5) )
Quantile function of folded model.
Description
Computes cdf of the folded model.
Usage
qfolded(p, spec, arg, interval = c(0, 100), lower.tail = TRUE, log.p = FALSE)
Arguments
p |
scalar or vector of probabilities to compute the qf. |
spec |
a character string specifying the parent distribution (for example, "norm" if the parent distribution correspond to the normal). |
arg |
list of arguments/parameters of the parent distribution. |
interval |
a vector of interval end-points for |
lower.tail |
logical; if |
log.p |
logical; if |
Value
An object of the same length as p
, giving the qf values computed at p
.
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Brazauskas, V., & Kleefeld, A. (2011). Folded and log-folded-t distributions as models for insurance loss data. Scandinavian Actuarial Journal, 2011(1), 59-74.
Examples
x=runif(10, min=0, max=1)
y=qfolded(x, spec="norm", arg=list(mean=1,sd=2), interval=c(0,100) )
Quantile function of mixture model.
Description
Computes qf of the mixture model.
Usage
qmixt(p, phi, spec1, arg1, spec2, arg2, interval = c(0, 100),
lower.tail = TRUE, log.p = FALSE)
Arguments
p |
scalar or vector of probabilities to compute the qf. |
phi |
the value of |
spec1 |
a character string specifying the first parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the first parent distribution. |
spec2 |
a character string specifying the second parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the second parent distribution. |
interval |
a vector of interval end-points for |
lower.tail |
logical; if |
log.p |
logical; if |
Value
An object of the same length as p
, giving the qf values computed at p
.
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London. A, 71-110.
Examples
x=runif(10, min=0, max=1)
y=qmixt(x, phi=0.5, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp",
arg2=list(rate=0.5))
Quantile function of skewed symmetric model.
Description
Computes qf of the skewed symmetric model.
Usage
qskew(p, spec1, arg1, spec2, arg2, interval = c(1, 10), lower.tail = TRUE, log.p = FALSE)
Arguments
p |
scalar or vector of probabilities to compute the qf. |
spec1 |
a character string specifying the parent distribution |
arg1 |
list of arguments/parameters of the parent distribution |
spec2 |
a character string specifying the parent distribution |
arg2 |
list of arguments/parameters of the parent distribution |
interval |
a vector of interval end-points for |
lower.tail |
logical; if |
log.p |
logical; if |
Value
An object of the same length as p
, giving the qf values computed at p
.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal of statistics, 171-178.
Examples
x=runif(10, min=0, max=1)
y=qskew(x, spec1="norm", arg1=list(mean=0,sd=0.1), spec2="logis",
arg2=list(location=0,scale=0.2))
Random generation of arc tan model.
Description
Computes rg of the arc tan model.
Usage
rarctan(n, alpha, spec, arg)
Arguments
n |
number of random generated values. |
alpha |
the value of |
spec |
a character string specifying the parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg |
list of arguments/parameters of the parent distribution. |
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Gomez-Deniz, E., & Calderin-Ojeda, E. Modelling insurance data with the pareto arctan distribution. ASTIN Bulletin, 1-22.
Examples
y=rarctan(10, alpha=0.5, spec="lnorm", arg=c(meanlog=1,sdlog=2) )
Random generation of composite model.
Description
Computes rg of the composite model.
Usage
rcomposite(n, spec1, arg1, spec2, arg2, initial = 1)
Arguments
n |
number of random generated values. |
spec1 |
a character string specifying the head parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the head parent distribution. |
spec2 |
a character string specifying the tail parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the tail parent distribution. |
initial |
initial values of the threshold, |
Value
An object of the length n
, giving the random generated values for the composite model.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Cooray, K., & Ananda, M. M. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005(5), 321-334.
Scollnik, D. P. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20-33.
Nadarajah, S., & Bakar, S. A. A. (2014). New composite models for the Danish fire insurance data. Scandinavian Actuarial Journal, 2014(2), 180-187.
Bakar, S. A., Hamzah, N. A., Maghsoudi, M., & Nadarajah, S. (2015). Modeling loss data using composite models. Insurance: Mathematics and Economics, 61, 146-154.
Examples
y=rcomposite(10, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp",
arg2=list(rate=0.5))
Random generation of folded model.
Description
Computes rg of the folded model.
Usage
rfolded(n, spec, arg, interval = c(0, 100))
Arguments
n |
number of random generated values. |
spec |
a character string specifying the parent distribution (for example, "norm" if the parent distribution correspond to the normal). |
arg |
list of arguments/parameters of the parent distribution. |
interval |
a vector of interval end-points to search function root. |
Value
An object of the length n
, giving the random generated values for the folded model.
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Brazauskas, V., & Kleefeld, A. (2011). Folded and log-folded-t distributions as models for insurance loss data. Scandinavian Actuarial Journal, 2011(1), 59-74.
Examples
y=rfolded(10, spec="norm", arg=list(mean=1,sd=2), interval=c(0,100) )
Random generation of mixture model.
Description
Computes rg of the mixture model.
Usage
rmixt(n, phi, spec1, arg1, spec2, arg2, interval = c(0, 100))
Arguments
n |
number of random generated values. |
phi |
the value of |
spec1 |
a character string specifying the first parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the first parent distribution. |
spec2 |
a character string specifying the second parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the second parent distribution. |
interval |
a vector of interval end-points to search function root. |
Value
An object of the length n
, giving the random generated values for the mixture model.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London. A, 71-110.
Examples
y=rmixt(10, phi=0.5, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp",
arg2=list(rate=0.5) )
Random generation of skewed symmetric model.
Description
Computes rg of the skewed symmetric model.
Usage
rskew(n, spec1, arg1, spec2, arg2, interval = c(1, 10))
Arguments
n |
number of random generated values. |
spec1 |
a character string specifying the parent distribution |
arg1 |
list of arguments/parameters of the parent distribution |
spec2 |
a character string specifying the parent distribution |
arg2 |
list of arguments/parameters of the parent distribution |
interval |
a vector of interval end-points to search function root. |
Value
An object of the length n
, giving the random generated values for the skewed symmetric model.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal of statistics, 171-178.
Examples
y=rskew(10, spec1="norm", arg1=list(mean=0,sd=0.1), spec2="logis",
arg2=list(location=0,scale=0.2))