Type: | Package |
Title: | Generalised Exponential Poisson and Poisson Exponential Distributions |
Version: | 1.0 |
Date: | 2024-06-23 |
Author: | Michail Tsagris [aut, cre], Sofia Piperaki [aut] |
Maintainer: | Michail Tsagris <mtsagris@uoc.gr> |
Depends: | R (≥ 4.0) |
Imports: | Rfast2, stats |
Description: | Maximum likelihood estimation, random values generation, density computation and other functions for the exponential-Poisson generalised exponential-Poisson and Poisson-exponential distributions. References include: Rodrigues G. C., Louzada F. and Ramos P. L. (2018). "Poisson-exponential distribution: different methods of estimation". Journal of Applied Statistics, 45(1): 128–144. <doi:10.1080/02664763.2016.1268571>. Louzada F., Ramos, P. L. and Ferreira, H. P. (2020). "Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence". Communications in Statistics–Simulation and Computation, 49(4): 1024–1043. <doi:10.1080/03610918.2018.1491988>. Barreto-Souza W. and Cribari-Neto F. (2009). "A generalization of the exponential-Poisson distribution". Statistics and Probability Letters, 79(24): 2493–2500. <doi:10.1016/j.spl.2009.09.003>. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | no |
Packaged: | 2024-06-23 11:22:38 UTC; mtsag |
Repository: | CRAN |
Date/Publication: | 2024-06-24 16:00:02 UTC |
Generalised Exponential Poisson and Poisson Exponential Distributions
Description
The package offers sime functions (including MLE) for the exponential-Poisson (EP), the generalised EP (GEP) and the Poisson-exponential (PE) distributions.
Details
Package: | geppe |
Type: | Package |
Version: | 1.0 |
Date: | 2024-06-23 |
License: | GPL-2 |
Maintainers
Michail Tsagris mtsagris@uoc.gr.
Author(s)
Michail Tsagris mtsagris@uoc.gr and Sofia Piperaki sofiapip23@gmail.com.
References
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
Density computation of the GEP, EP and PE distributions
Description
Density computation of the GEP, EP and PE distributions.
Usage
depois(x, beta, lambda, logged = FALSE)
dgep(x, beta, alpha, lambda, logged = FALSE)
dpe(x, theta, lambda, logged = FALSE)
Arguments
x |
A numerical vector with non-negative values. |
beta |
A strictly positive number, the scale parameter ( |
alpha |
A stritly positive number, the |
theta |
A strictly positive number, the shape parameter ( |
lambda |
A strictly positive number, the shape parameter ( |
logged |
Should the logarithm of the density values be computed? The default value is FALSE. |
Details
The density values of the GEP, EP and PE distributions are computed.
The density function of the EP is given by
f(x)=\dfrac{\lambda \beta e^{-\lambda-\beta x + \lambda e^{-\beta x}}}{1-e^{-\lambda}}.
The density function of the GEP is given by
f(x)=\dfrac{\alpha \lambda \beta}{\left(1-e^{-\lambda}\right)^{\alpha}}\left(1-e^{-\lambda+\lambda e^{-\beta x}}\right)^{\alpha-1}e^{-\lambda -\beta x + \lambda e^{-\beta x}}.
The density function of the PE is given by
f(x)=\dfrac{\theta \lambda e^{-\lambda x-\theta e^{\lambda x}}}{1-e^{-\theta}}.
Value
A vector with the (logged) density values.
Author(s)
Sofia Piperaki.
R implementation and documentation: Sofia Piperaki sofiapip23@gmail.com and Michail Tsagris mtsagris@uoc.gr.
References
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
See Also
Examples
x <- rgep(100, 1, 2, 3)
y <- dgep(x, 1, 2, 3, logged = TRUE)
sum(y)
Distribution function of the GEP, EP and PE distributions
Description
Distribution function of the GEP, EP and PE distributions.
Usage
pepois(x, beta, lambda)
pgep(x, beta, alpha, lambda)
ppe(x, theta, lambda)
Arguments
x |
A numerical vector with non-negative values. |
beta |
A strictly positive number, the scale parameter ( |
alpha |
A stritly positive number, the |
theta |
A strictly positive number, the shape parameter ( |
lambda |
A strictly positive number, the shape parameter ( |
Details
The cumulative distribution values of the GEP, EP and PE distributions are computed.
The probability function of the EP is given by
f(x)=\dfrac{e^{\lambda e^{-\beta x}}}{1-e^{\lambda}}.
The probability function of the GEP is given by
f(x)=\left(\dfrac{1-e^{-\lambda+\lambda e^{-\beta x}}}{1-e^{-\lambda}}\right)^{\alpha]}.
The probability function of the PE is given by
f(x)=\dfrac{1-e^{\theta-\theta e^{-\lambda x}}}{1-e^{-\theta}}.
Value
A vector with the cumulative distribution density values.
Author(s)
Sofia Piperaki.
R implementation and documentation: Sofia Piperaki sofiapip23@gmail.com and Michail Tsagris mtsagris@uoc.gr.
References
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
See Also
Examples
x <- rgep(100, 1, 2, 3)
y <- pgep(x, 1, 2, 3)
Maximum likelihood estimation of the GEP, EP and PE distributions
Description
Maximum likelihood estimation of the GEP, EP and PE distributions.
Usage
epois.mle(x)
gep.mle(x)
pe.mle(x)
Arguments
x |
A numerical vector with non negative values. |
Details
Maximum likelihood estimation of the EP, GEP and PE distributions is performed.
Value
A list including:
param |
A vector with the estimated values of |
loglik |
The log-likelihood value of the distribution. |
Author(s)
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.
References
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
See Also
Examples
x <- repois( 1000, 1, 3)
epois.mle(x)
Quantile function of the GEP, EP and PE distributions
Description
Quantile function of the GEP, EP and PE distributions.
Usage
qepois(p, beta, lambda)
qgep(p, beta, alpha, lambda)
qpe(p, theta, lambda)
Arguments
p |
A numerical vector with probability values. |
beta |
A strictly positive number, the scale parameter ( |
alpha |
A stritly positive number, the |
theta |
A strictly positive number, the shape parameter ( |
lambda |
A strictly positive number, the shape parameter ( |
Details
The quantiles of the GEP, EP and PE distributions are computed.
The quantile function of the EP is given by
x_q=-\dfrac{\log\left[\lambda^{-1}\log\left(q\left(1-e^{\lambda}\right)+e^{\lambda}\right)\right]}{\beta}.
The quantile function of the GEP is given by
x_q=-\dfrac{\log{\left[1+\lambda^{-1}\log{\left(1-q^{1/\alpha}\left(1-e^{-\lambda}\right)\right)}\right]}}{\beta}.
The quantile function of the PE is given by
x_q=\dfrac{\log{\left(\theta\right)}-\log{\left[-\log{\left(q-e^{\theta}\left(q-1\right)\right)}\right]}}{\lambda}.
Value
A vector with the quantile values.
Author(s)
Sofia Piperaki.
R implementation and documentation: Sofia Piperaki sofiapip23@gmail.com and Michail Tsagris mtsagris@uoc.gr.
References
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
See Also
Examples
y <- qgep(seq(0.1, 0.9, by = 0.1), 1, 2, 3)
Random values generation from the GEP, EP and PE distributions
Description
Random values generation from the GEP, EP and PE distributions.
Usage
repois(n, beta, lambda)
rgep(n, beta, alpha, lambda)
rpe(n, theta, lambda)
Arguments
n |
The sample size. |
beta |
A strictly positive number, the scale parameter ( |
alpha |
A stritly positive number, the |
theta |
A strictly positive number, the shape parameter ( |
lambda |
A strictly positive number, the shape parameter ( |
Details
In order to generate values from these distributions the inverse rejection sampling is used.
Value
A vector with generated values from the GEP, EP or the PE distribution.
Author(s)
Sofia Piperaki.
R implementation and documentation: Sofia Piperaki sofiapip23@gmail.com and Michail Tsagris mtsagris@uoc.gr.
References
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
See Also
Examples
x <- rgep(100, 1, 2, 3)