hIRT is an R package that implements a class of hierarchical item
response theory (IRT) models where both the mean and the variance of the
latent “ability parameters” may depend on observed covariates. The
current implementation includes both the two-parameter latent trait
model for binary data (hltm() and hltm2()) and
the graded response model for ordinal data (hgrm() and
hgrm2()). Both are fitted via the Expectation-Maximization
(EM) algorithm. Asymptotic standard errors are derived from the observed
information matrix.
Main Reference: Zhou, Xiang. 2019. “Hierarchical Item Response Models for Analyzing Public Opinion.” Political Analysis, 27(4): 481-502. Available at: https://doi.org/10.1017/pan.2018.63
Full paper with technical appendix is available at: https://scholar.harvard.edu/files/xzhou/files/Zhou2019_hIRT.pdf
You can install the released version of hIRT from CRAN with:
install.packages("hIRT")And the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("xiangzhou09/hIRT")The following example illustrates how the hgrm()
function can be used to examine the effects of education and party
affiliation on economic ideology, a latent variable gauged by a number
of survey items in the American National Election Studies (ANES), 2008.
Documentation of the dataset nes_econ2008 can be accessed
by running ?nes_econ2008 in R after loading the
hIRT package.
library(hIRT)
#> Registered S3 method overwritten by 'pryr':
#>   method      from
#>   print.bytes Rcpp
# survey items used to measure economic ideology
y <- nes_econ2008[, -(1:3)]
# predictors for the mean of economic ideology
x <- model.matrix( ~ party * educ, nes_econ2008)
# predictors for the variance of economic ideology
z <- model.matrix( ~ party, nes_econ2008)
# fitting a hierarhical graded response model
nes_m1 <- hgrm(y, x, z)
#> ............
#>  converged at iteration 12
nes_m1
#> 
#> Call:
#> hgrm(y = y, x = x, z = z)
#> 
#> Mean Regression:
#>                          Estimate Std_Error z_value p_value
#> x_(Intercept)              -0.480     0.105  -4.570   0.000
#> x_partyindependent          0.386     0.086   4.473   0.000
#> x_partyRepublican           1.133     0.135   8.408   0.000
#> x_educ2                     0.037     0.079   0.467   0.641
#> x_partyindependent:educ2    0.235     0.117   2.007   0.045
#> x_partyRepublican:educ2     0.428     0.148   2.886   0.004
#> 
#> Variance Regression:
#>                    Estimate Std_Error z_value p_value
#> z_(Intercept)        -0.097     0.139  -0.697   0.486
#> z_partyindependent    0.166     0.100   1.661   0.097
#> z_partyRepublican     0.172     0.126   1.373   0.170
#> 
#> Log Likelihood: -16259.16The output from hgrm is an object of class
hIRT. The print() method for hIRT
outputs the regression tables for the mean regression and the variance
regression.
The coef_item(), coef_mean(), and
coef_var() functions can be used to extract coefficient
tables for item parameters, the mean regression, and the variance
regression respectively.
coef_item(nes_m1)
#> $health_ins7
#>        Estimate Std_Error z_value p_value
#> y>=2      1.279        NA      NA      NA
#> y>=3      0.541     0.063   8.542   0.000
#> y>=4     -0.075     0.083  -0.898   0.369
#> y>=5     -1.047     0.107  -9.826   0.000
#> y>=6     -1.852     0.124 -14.901   0.000
#> y>=7     -2.684     0.149 -17.990   0.000
#> Dscrmn    1.016     0.096  10.569   0.000
#> 
#> $jobs_guar7
#>        Estimate Std_Error z_value p_value
#> y>=2      2.136     0.173  12.377       0
#> y>=3      1.352     0.153   8.860       0
#> y>=4      0.607     0.141   4.299       0
#> y>=5     -0.520     0.137  -3.797       0
#> y>=6     -1.611     0.141 -11.429       0
#> y>=7     -2.785     0.163 -17.043       0
#> Dscrmn    1.305     0.114  11.448       0
#> 
#> $gov_services7
#>        Estimate Std_Error z_value p_value
#> y>=2      3.950     0.222  17.760   0.000
#> y>=3      2.859     0.182  15.707   0.000
#> y>=4      1.831     0.158  11.592   0.000
#> y>=5      0.247     0.147   1.679   0.093
#> y>=6     -1.001     0.154  -6.490   0.000
#> y>=7     -2.020     0.169 -11.947   0.000
#> Dscrmn   -1.363     0.116 -11.715   0.000
#> 
#> $FS_poor3
#>        Estimate Std_Error z_value p_value
#> y>=2     -1.180     0.179  -6.601       0
#> y>=3     -4.459     0.243 -18.357       0
#> Dscrmn    1.918     0.164  11.679       0
#> 
#> $FS_childcare3
#>        Estimate Std_Error z_value p_value
#> y>=2     -0.808     0.148  -5.474       0
#> y>=3     -4.051     0.192 -21.132       0
#> Dscrmn    1.608     0.128  12.535       0
#> 
#> $FS_crime3
#>        Estimate Std_Error z_value p_value
#> y>=2     -0.845     0.066 -12.866       0
#> y>=3     -3.150     0.108 -29.048       0
#> Dscrmn    0.516     0.059   8.823       0
#> 
#> $FS_publicschools3
#>        Estimate Std_Error z_value p_value
#> y>=2     -1.790     0.136 -13.197       0
#> y>=3     -4.144     0.188 -22.022       0
#> Dscrmn    1.302     0.111  11.751       0
#> 
#> $FS_welfare3
#>        Estimate Std_Error z_value p_value
#> y>=2      1.054     0.117   8.970       0
#> y>=3     -1.355     0.116 -11.650       0
#> Dscrmn    1.178     0.099  11.937       0
#> 
#> $FS_envir3
#>        Estimate Std_Error z_value p_value
#> y>=2     -0.855     0.106  -8.071       0
#> y>=3     -3.499     0.159 -22.023       0
#> Dscrmn    1.101     0.092  11.953       0
#> 
#> $FS_socsec3
#>        Estimate Std_Error z_value p_value
#> y>=2     -1.091     0.104 -10.535       0
#> y>=3     -4.278     0.178 -24.033       0
#> Dscrmn    1.028        NA      NA      NA
coef_mean(nes_m1)
#>                          Estimate Std_Error z_value p_value
#> x_(Intercept)              -0.480     0.105  -4.570   0.000
#> x_partyindependent          0.386     0.086   4.473   0.000
#> x_partyRepublican           1.133     0.135   8.408   0.000
#> x_educ2                     0.037     0.079   0.467   0.641
#> x_partyindependent:educ2    0.235     0.117   2.007   0.045
#> x_partyRepublican:educ2     0.428     0.148   2.886   0.004
coef_var(nes_m1)
#>                    Estimate Std_Error z_value p_value
#> z_(Intercept)        -0.097     0.139  -0.697   0.486
#> z_partyindependent    0.166     0.100   1.661   0.097
#> z_partyRepublican     0.172     0.126   1.373   0.170The latent_scores() function can be used to extract the
Expected A Posteriori (EAP) estimates of the latent ability parameters,
along with their “prior” estimates (without the random effects). In this
example, the latent ability estimates can be interpreted as the
estimated ideological positions of ANES respondents on economic
issues.
pref <- latent_scores(nes_m1)
summary(pref)
#>    post_mean            post_sd         prior_mean            prior_sd    
#>  Min.   :-2.082000   Min.   :0.3940   Min.   :-0.4800000   Min.   :0.953  
#>  1st Qu.:-0.751000   1st Qu.:0.4788   1st Qu.:-0.4440000   1st Qu.:0.953  
#>  Median :-0.104000   Median :0.5280   Median :-0.0950000   Median :1.035  
#>  Mean   :-0.000147   Mean   :0.5469   Mean   :-0.0001561   Mean   :1.001  
#>  3rd Qu.: 0.629500   3rd Qu.:0.6090   3rd Qu.: 0.1770000   3rd Qu.:1.035  
#>  Max.   : 3.359000   Max.   :0.9780   Max.   : 1.1170000   Max.   :1.039The constr parameter in the hgrm() and
hltm() function can be used to specify the type of
constraints used to identify the model. The default option,
"latent_scale", constrains the mean of the latent ability
parameters to zero and the geometric mean of their prior variance to
one; Alternatively, "items" sets the mean of the item
difficulty parameters to zero and the geometric mean of the
discrimination parameters to one.
In practice, one may want to interpret the effects of the mean predictors (in the above example, education and party affiliation) on the standard deviation scale of the latent trait. This can be easily achieved through rescaling their point estimates and standard errors.
library(dplyr)
total_sd <- sqrt(var(pref$post_mean) + mean(pref$post_sd^2))
coef_mean_sd_scale <- coef_mean(nes_m1) %>%
  mutate(`Estimate` = `Estimate`/total_sd,
         `Std_Error` = `Std_Error`/total_sd)
coef_mean_sd_scale
#>      Estimate  Std_Error z_value p_value
#> 1 -0.42437486 0.09283200  -4.570   0.000
#> 2  0.34126812 0.07603383   4.473   0.000
#> 3  1.00170150 0.11935543   8.408   0.000
#> 4  0.03271223 0.06984503   0.467   0.641
#> 5  0.20776686 0.10344137   2.007   0.045
#> 6  0.37840092 0.13084892   2.886   0.004Sometimes, the researcher might want to fit the hIRT models using a
set of fixed item parameters, for example, to make results comparable
across different studies. The hgrm2() and
hltm2() functions can be used for this purpose. They are
illustrated in more detail in the package documentation.