Type: | Package |
Title: | Regression Methods for Interval-Valued Variables |
Version: | 1.2.1 |
Date: | 2016-07-16 |
Imports: | mgcv |
Author: | Eufrasio de A. Lima Neto / Claudio A. V. de Souza Filho / Pedro R. D. Marinho |
Maintainer: | Eufrasio de A. Lima Neto <eufrasio@de.ufpb.br> |
Description: | Contains some important regression methods for interval-valued variables. For each method, it is available the fitted values, residuals and some goodness-of-fit measures. |
Depends: | R(≥ 2.8.0) |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
LazyLoad: | yes |
Packaged: | 2016-07-18 16:25:00 UTC; Pedro |
NeedsCompilation: | no |
Repository: | CRAN |
Date/Publication: | 2016-07-18 20:09:24 |
Regression Methods for Interval-Valued Variables
Description
Contains some important regression methods for interval-valued variables. For each method, it is available the fitted values, residuals and some goodness-of-fit measures.
Details
Package: | iRegression |
Type: | Package |
Version: | 1.2.1 |
Date: | 2016-07-16 |
License: | GPL (>= 2) |
LazyLoad: | yes |
Some available functions:
cm
, MinMax
, crm
, ccrm
, bivar
Author(s)
Eufrasio de A. Lima Neto eufrasio@de.ufpb.br , Claudio A. V. de Souza Filho and Pedro R. D. Marinho
Maintainer: Eufrasio de A. Lima Neto eufrasio@de.ufpb.br
Acknowledgments: The authors would like to thank CNPq (Brazilian Agency) for their financial support.
References
Billard, L. and Diday, E. (2000) Regression analysis for interval-valued data. Data Analysis, Classification and Related Methods: Proceedings of the Seventh Conference of the International Federation of Classification Societies, Springer-Verlag, pp. 369-374.
Lima Neto, E.A. and De Carvalho, F.A.T. (2008). Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis, 52, 1500–1515.
Lima Neto, E.A. and De Carvalho, F.A.T. (2010). Constrained linear regression models for symbolic interval-valued variables. Computational Statistics and Data Analysis, 54, 333–347.
Lima Neto, E. A., Cordeiro, G. and De Carvalho, F.A.T. (2011). Bivariate symbolic regression models for interval-valued variables. Journal of Statistical Computation and Simulation (Print), 81, 1727–1744.
Cardiological Interval Data Set (Centre and Range)
Description
A real interval-valued data set represented in terms of the centre and the range of the intervals.
Usage
data("Cardiological.CR")
Format
A data frame containing the following variables:.
- PulseC
The midpoint of the response interval-valued variable Pulse
- SystC
The midpoint of the explanatory interval-valued variable Systolic Pressure
- DiastC
The midpoint of the explanatory interval-valued variable Diastolic Pressure
- PulseR
The range of the response interval-valued variable Pulse
- SystR
The range of the explanatory interval-valued variable Systolic Pressure
- DiastR
The range of the explanatory interval-valued variable Diastolic Pressure
Details
This data set concerns the record of the pulse rate (Y), systolic blood pressure (X1) and diastolic blood pressure (X2) from 11 patients.
Source
Billard and Diday (2000)
References
Billard, L. and Diday, E. (2000) Regression analysis for interval-valued data. Data Analysis, Classification and Related Methods: Proceedings of the Seventh Conference of the International Federation of Classification Societies, Springer-Verlag, pp. 369-374.
See Also
Examples
data("Cardiological.CR", package = "iRegression")
crm1 <- crm("PulseC~SystC+DiastC","PulseR~SystR+DiastR",data=Cardiological.CR)
summary(crm1)
Cardiological Interval Data Set
Description
A real interval-valued data set.
Usage
data("Cardiological.CR")
Format
A data frame containing following variables:
- PulseMin
Lower bound of the response interval-valued variable Pulse
- SystMin
Lower bound of the explanatory interval-valued variable Systolic Pressure
- DiastMin
Lower bound of the explanatory interval-valued variable Diastolic Pressure
- PulseMax
Upper bound of the response interval-valued variable Pulse
- SystMax
Upper bound of the explanatory interval-valued variable Systolic Pressure
- DiastMax
Upper bound of the explanatory interval-valued variable Diastolic Pressure
Details
This data set concerns the record of the pulse rate (Y), systolic blood pressure (X1) and diastolic blood pressure (X2) from 11 patients.
Source
Billard and Diday (2000)
References
Billard, L. and Diday, E. (2000) Regression analysis for interval-valued data. Data Analysis, Classification and Related Methods: Proceedings of the Seventh Conference of the International Federation of Classification Societies, Springer-Verlag, pp. 369-374.
See Also
Examples
data("Cardiological.MinMax", package = "iRegression")
cm1 <- cm(PulseMin~SystMin+DiastMin,PulseMax~SystMax+DiastMax,data=Cardiological.MinMax)
summary(cm1)
##
data("Cardiological.MinMax", package = "iRegression")
MinMax1 <- MinMax(PulseMin~SystMin+DiastMin,PulseMax~SystMax+DiastMax,data=Cardiological.MinMax)
summary(MinMax1)
MinMax Method
Description
MinMax
is used to fit a linear regression model to symbolic interval-valued variables based on the MinMax method (Lima Neto and De Carvalho, 2008).
Usage
MinMax(formula1, formula2, data, ...)
Arguments
formula1 |
an object of class " |
formula2 |
an object of class " |
data |
an optional data frame containing the variables in the model. |
... |
other arguments. |
Details
The Min-Max Method suggests to estimate the lower and upper bounds of the intervals using different vectors of parameters. This is equivalent to supposing independence between the values of lower and upper bounds of the intervals. The MinMax Method fits two independent linear regression models on the lower and upper bounds of the intervals, respectively, and minimizes the error of the lower bounds plus the error of the upper bounds.
Value
MinMax
returns an object of class "MinMax
" including at least the following elements:
coefficients.l |
a named vector of coefficients for the Minimum explanatory variables. |
coefficients.u |
a named vector of coefficients for the Maximum explanatory variables. |
sigma.l |
an estimate of standard deviation for the Minimum response variable |
sigma.u |
an estimate of standard deviation for the Maximum response variable |
df.l |
the degrees of freedom for the lower residuals |
df.u |
the degrees of freedom for the upper residuals |
fitted.values.l |
the fitted values for the lower interval bound. |
fitted.values.u |
the fitted values for the upper interval bound. |
residuals.l |
the ordinary residuals for the lower interval bound. |
residuals.u |
the ordinary residuals for the upper interval bound. |
Note
formula1
must contain the lower limit of the symbolic interval-valued variables. formula2
contain the upper limit of the symbolic interval-valued variables.
Author(s)
Eufrasio de A. Lima Neto eufrasio@de.ufpb.br , Claudio A. V. de Souza Filho and Pedro R. D. Marinho
References
Billard, L. and Diday, E. (2000) Regression analysis for interval-valued data. Data Analysis, Classification and Related Methods: Proceedings of the Seventh Conference of the International Federation of Classification Societies, Springer-Verlag, pp. 369-374.
Lima Neto, E.A. and De Carvalho, F.A.T. (2008). Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis, 52, 1500–1515.
See Also
summary.MinMax
, coef.MinMax
, fitted.MinMax
, residuals.MinMax
, formula
Examples
data("Cardiological.MinMax", package = "iRegression") ## see Billard, L. and Diday, E. (2000)
ex.MinMax <- MinMax(PulseMin~SystMin+DiastMin,PulseMax~SystMax+DiastMax,data=Cardiological.MinMax)
ex.MinMax
Bivariate Symbolic Regression Method
Description
This function fits an bivariate regression model for interval-valued variables, based on bivariate exponential family of distributions, and return the fitted values, the residuals, rho, phi and the goodness-of-fit measure deviance
Usage
bivar(formula1, lig1, formula2, lig2, data, ...)
Arguments
formula1 |
an object of class " |
lig1 |
the link function to be considered in the first model: identity, inverse or log |
formula2 |
an object of class " |
lig2 |
the link function to be considered in the second model: identity, inverse or log |
data |
an optional data frame containing the variables in the model. |
... |
other arguments. |
Details
This function fits an bivariate regression model for interval-valued variables considering the bivariate Gaussian distribution in the random component Y = [Y1, Y2]. It is possible consider any pair of interval features for the bivariate random vector Y. For example, the lower and upper interval bounds or the midpoint and the range of intervals, respectively. It also possible to choice different link functions (identity, inverse or log) to connect the random variables Y1 and Y2 with the respective linear predictors.
Value
bivar
returns an object of class "bivar
" including at least the following elements:
coefficients1 |
a named vector of coefficients for the explanatory variables of the model "1". |
coefficients2 |
a named vector of coefficients for the explanatory variables of the model "2". |
fitted.values1 |
the fitted values for the response variable Y1 . |
fitted.values2 |
the fitted values for the response variable Y2. |
residuals1 |
the ordinary residual for the response variable Y1. |
residuals2 |
the ordinary residual for the response variable Y2. |
residual.deviance |
the global residual for the bivariate vector Y=[Y1, Y2]. |
Rho |
the estimative for the correlation coefficient between Y1 and Y2. |
Phi |
the estimative of the dispersion parameter. |
D |
the goodness-of-fit measure deviance for the current model. |
Note
lig1
and lig2
must be "identity
", "inverse
" or "log
" for identity, inverse or logarithmic link functions, respectively.
Author(s)
Eufrasio de A. Lima Neto eufrasio@de.ufpb.br , Claudio A. V. de Souza Filho and Pedro R. D. Marinho
References
Lima Neto, E. A., Cordeiro, G. and De Carvalho, F.A.T. (2011). Bivariate symbolic regression models for interval-valued variables. Journal of Statistical Computation and Simulation (Print), 81, 1727–1744.
See Also
summary.bivar
, coef.bivar
, fitted.bivar
, residuals.bivar
, formula
Examples
data("soccer.bivar", package = "iRegression")
ex.bivar <- bivar("yMin~t1Min+t2Min", "identity", "yMax~t1Max+t2Max", "identity", data=soccer.bivar)
ex.bivar
Constrained Centre and Range Method
Description
ccrm
is used to fit a linear regression model to symbolic interval-valued variables based on the inequality constraints over
the range variables (Lima Neto and De Carvalho, 2010).
Usage
ccrm(formula1, formula2, data, ...)
Arguments
formula1 |
an object of class " |
formula2 |
an object of class " |
data |
an optional data frame containing the variables in the model. |
... |
other arguments. |
Details
The Constrained Centre and Range method (CCRM) was proposed by Lima Neto and De Carvalho (2010) and fits two independent linear regression models on the midpoint and range of the intervals. In the Constrained Centre and Range Method, the estimative of the parameters of the range's model is based on inequality constraints. There is no constraints over the parameters estimates for the midpoint regression equation. The aim is to guarantee mathematical coherence between the predicted values of the lower and upper bounds of the response interval-valued variable Y, i.e., yL < yU.
Value
ccrm
returns an object of class "ccrm
" including at least the following elements:
coefficients.C |
a named vector of coefficients for the Centre's explanatory variables. |
coefficients.R |
a named vector of coefficients for the Range's explanatory variables. |
sigma.C |
an estimative of the standard deviation for the Centre's response variable. |
sigma.R |
an estimative of the standard deviation for the Range's response variable. |
df.C |
the degrees of freedom for the Centre residuals |
df.R |
the degrees of freedom for the Range residuals |
fitted.values.l |
the fitted values for the lower interval bound. |
fitted.values.u |
the fitted values for the upper interval bound. |
residuals.l |
the ordinary residuals for the lower interval bound. |
residuals.u |
the ordinary residuals for the upper interval bound. |
Note
formula1
must contain the midpoint of the symbolic interval-valued variables. formula2
contain the range (upper limit minus lower limit) of the symbolic interval-valued variables.
Author(s)
Eufrasio de A. Lima Neto eufrasio@de.ufpb.br , Claudio A. V. de Souza Filho and Pedro R. D. Marinho
References
Lima Neto, E.A. and De Carvalho, F.A.T. (2010). Constrained linear regression models for symbolic interval-valued variables. Computational Statistics and Data Analysis, 54, 333–347.
See Also
summary.ccrm
, coef.ccrm
, fitted.ccrm
, residuals.ccrm
, formula
Examples
data("Cardiological.CR", package = "iRegression")
ex.ccrm <- ccrm("PulseC~SystC+DiastC","PulseR~SystR+DiastR",data=Cardiological.CR)
ex.ccrm
Centre Method
Description
cm
is used to fit a linear regression model to symbolic interval-valued variables based on the centre method (Billard and Diday, 2000).
Usage
cm(formula1, formula2, data, ...)
Arguments
formula1 |
an object of class |
formula2 |
an object of class |
data |
an optional data frame containing the variables in the model. |
... |
other arguments. |
Details
Billard and Diday (2000) presented the first approach to fitting a linear regression model to symbolic interval data sets from a SDA of view. Their approach consists on fitting a linear regression model to the mid-points of the interval values assumed by the symbolic interval variables in the learning set and applies this model to the lower and upper bounds of the interval values of the independent symbolic interval variables to be predicted, respectively, the lower and upper bounds of the interval value of the dependent variable. The Centre Method is based on the minimization of the midpoint error. The lower and upper bounds of the dependent variable are predicted, respectively, from the lower and upper bounds of the independent variable using the same vector of parameters beta.
Value
cm
returns an object of class "cm
" including at least the following elements:
coefficients |
a named vector of coefficients. |
sigma |
an estimate of standard deviation. |
df |
the residual degrees of freedom. |
fitted.values.l |
the fitted values for the lower interval bound. |
fitted.valuues.u |
the fitted values for the upper interval bound. |
residuals.l |
the ordinary residuals for the lower interval bound . |
residuals.u |
the ordinary residuals for the upper interval bound . |
Note
formula1
must contain the lower limit of the symbolic interval-valued variables. formula2
contain the upper limit
of the symbolic interval-valued variables.
Author(s)
Eufrasio de A. Lima Neto eufrasio@de.ufpb.br, Claudio A. V. de Souza Filho and Pedro R. D. Marinho
References
Billard, L. and Diday, E. (2000) Regression analysis for interval-valued data. Data Analysis, Classification and Related Methods: Proceedings of the Seventh Conference of the International Federation of Classification Societies, Springer-Verlag, pp. 369-374.
Lima Neto, E.A. and De Carvalho, F.A.T. (2008). Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis, 52, 1500–1515.
See Also
summary.cm
, coef
, fitted.cm
, residuals.cm
, formula
Examples
data("Cardiological.MinMax", package = "iRegression") ## see Billard and Diday (2000)
ex.cm <- cm(PulseMin~SystMin+DiastMin,PulseMax~SystMax+DiastMax,data=Cardiological.MinMax)
ex.cm
Extract Coefficients for the MinMax Method
Description
Returns the coefficients from an object class MinMax
.
Usage
## S3 method for class 'MinMax'
coef(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Coefficients extracted from an object class MinMax
.
See Also
Extract the Coefficients for the Bivariate Symbolic Regression Method
Description
Returns the coefficients from an object class bivar
.
Usage
## S3 method for class 'bivar'
coef(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Coefficients extracted from an object class bivar
.
See Also
Extract the Coefficients for the Constrained Centre and Range Method
Description
Returns the coefficients from an object class ccrm
.
Usage
## S3 method for class 'ccrm'
coef(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Coefficients extracted from an object class object
.
See Also
Extract the Coefficients for the Centre and Range Method
Description
Returns the coefficients from an object class crm
.
Usage
## S3 method for class 'crm'
coef(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Coefficients extracted from an object class object
.
See Also
Centre and Range Method
Description
crm
is used to fit a linear regression model to symbolic interval-valued variables based on the Centre and Range method (Lima Neto and De Carvalho, 2008).
Usage
crm(formula1, formula2, data, ...)
Arguments
formula1 |
an object of class " |
formula2 |
an object of class " |
data |
an optional data frame containing the variables in the model. |
... |
other arguments. |
Details
In the Center Method, the estimate of the parameters beta is based only on the midpoint of the intervals. However, the Centre and Range Method proposed by Lima Neto and De Carvalho (2008) consider suitable to include both the information given by the center and by the range of an interval-valued variable on a linear regression model to improve the model prediction performance. The Centre and Range Method fits two independent linear regression models on the midpoint and range of the intervals, respectively, and minimizes the error of the midpoint plus the error of the range.
Value
cm
returns an object of class "crm
" including at least the following elements:
coefficients.C |
a named vector of coefficients for the Centre variables. |
coefficients.R |
a named vector of coefficients for the Range variables. |
sigma.C |
an estimate of standard deviation for the Centre response variable. |
sigma.R |
an estimate of standard deviation for the Range response variable. |
df.C |
the degrees of freedom for the centre residuals |
df.R |
the degrees of freedom for the range residuals |
fitted.values.l |
the fitted mean values for the lower interval bound. |
fitted.values.u |
the fitted mean values for the upper interval bound. |
residuals.l |
the residuals for the lower interval bound (that is response minus fitted values). |
residuals.u |
the residuals for the upper interval bound (that is response minus fitted values). |
Note
formula1
must contain the midpoint of the symbolic interval-valued variables. formula2
contain the range (upper limit minus lower limit) of the symbolic interval-valued variables.
Author(s)
Eufrasio de A. Lima Neto eufrasio@de.ufpb.br , Claudio A. V. de Souza Filho and Pedro R. D. Marinho
References
Billard, L. and Diday, E. (2000) Regression analysis for interval-valued data. Data Analysis, Classification and Related Methods: Proceedings of the Seventh Conference of the International Federation of Classification Societies, Springer-Verlag, pp. 369-374.
Lima Neto, E.A. and De Carvalho, F.A.T. (2008). Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis, 52, 1500–1515.
See Also
summary.crm
, coef.crm
, fitted.crm
, residuals.crm
, formula
Examples
data("Cardiological.CR", package = "iRegression")
ex.crm <- crm("PulseC~SystC+DiastC","PulseR~SystR+DiastR",data=Cardiological.CR)
ex.crm
Extract MinMax Method Fitted Values
Description
Returns the fitted values from an object class MinMax
.
Usage
## S3 method for class 'MinMax'
fitted(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Fitted values extracted from the object class MinMax
.
See Also
Extract Bivariate Symbolic Regression Method Fitted Values
Description
Returns the fitted values from an object class bivar
.
Usage
## S3 method for class 'bivar'
fitted(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Fitted values extracted from the object class bivar
.
See Also
Extract Constrained Centre and Range Method Fitted Values
Description
Returns the fitted values from an object class ccrm
.
Usage
## S3 method for class 'ccrm'
fitted(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Fitted values extracted from the object class object
.
See Also
Extract Centre Method Fitted Values
Description
Returns the fitted values from an object class cm
.
Usage
## S3 method for class 'cm'
fitted(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Fitted values extracted from an object class cm
.
See Also
Extract Centre and Range Method Fitted Values
Description
Returns the fitted values from an object class crm
.
Usage
## S3 method for class 'crm'
fitted(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Fitted values extracted from the object class object
.
See Also
Print Values for various iRegression methods
Description
print
prints its argument.
Usage
## S3 method for class 'cm'
print(x, ...)
## S3 method for class 'crm'
print(x, ...)
## S3 method for class 'ccrm'
print(x, ...)
## S3 method for class 'MinMax'
print(x, ...)
## S3 method for class 'bivar'
print(x, ...)
## S3 method for class 'summary.cm'
print(x, ...)
## S3 method for class 'summary.crm'
print(x, ...)
## S3 method for class 'summary.ccrm'
print(x, ...)
## S3 method for class 'summary.MinMax'
print(x, ...)
## S3 method for class 'summary.bivar'
print(x, ...)
## S3 method for class 'coef.crm'
print(x, ...)
## S3 method for class 'coef.ccrm'
print(x, ...)
## S3 method for class 'coef.MinMax'
print(x, ...)
## S3 method for class 'coef.bivar'
print(x, ...)
Arguments
x |
an object used to select a method.. |
... |
further arguments passed to or from other methods. |
See Also
Extract MinMax Method Residuals
Description
Returns the residuals from an object class MinMax
.
Usage
## S3 method for class 'MinMax'
residuals(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Residuals extracted from the object class MinMax
.
See Also
Extract Bivariate Symbolic Regression Method Residuals
Description
Returns the residuals from an object class bivar
.
Usage
## S3 method for class 'bivar'
residuals(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Residuals extracted from the object class bivar
.
See Also
Extract Constrained Centre and Range Method Residuals
Description
Returns the residuals from an object class ccrm
.
Usage
## S3 method for class 'ccrm'
residuals(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Residuals extracted from the object class ccrm
.
See Also
Extract Centre Method Residuals
Description
Returns the residuals from an object class cm
.
Usage
## S3 method for class 'cm'
residuals(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Residuals extracted from the object class cm
.
See Also
Extract Centre and Range Method Residuals
Description
Returns the residuals from an object class crm
.
Usage
## S3 method for class 'crm'
residuals(object, ...)
Arguments
object |
an object class |
... |
other arguments. |
Value
Residuals extracted from the object class crm
.
See Also
Soccer Interval Data Set
Description
A real interval-valued data set.
Usage
data("soccer.bivar")
Format
A data frame containing following variables:
- yMin
Minimum of the response variable Y (weight)
- t1Min
Minimum of the explanatory variable T1 (height)
- t2Min
Minimum of the explanatory variable T2 (age)
- yMax
Maximum of the response variable Y (weight)
- t1Max
Maximum of the explanatory variable T1 (height)
- t2Max
Maximum of the explanatory variable T2 (age)
Details
This data set concerns the record of the Weight (Y), Height (T1) and Age (T2) from 20 soccer teams of the premiere French championship.
Source
Lima Neto et. al. (2011)
References
Lima Neto, E. A., Cordeiro, G. and De Carvalho, F.A.T. (2011). Bivariate symbolic regression models for interval-valued variables. Journal of Statistical Computation and Simulation (Print), 81, 1727–1744.
See Also
Examples
data("soccer.bivar", package = "iRegression")
bivar1 <- bivar(yMin~t1Min+t2Min, "identity", yMax~t1Max+t2Max, "identity", data=soccer.bivar)
summary(bivar1)
Summarizing MinMax Method Fits
Description
summary
method for class MinMax
.
Usage
## S3 method for class 'MinMax'
summary(object, ...)
Arguments
object |
an object of class " |
.
... |
other arguments. |
Value
The function summary.MinMax
returns the following elements, given an object of the class "MinMax
",
Coef.L |
a named vector of coefficients for the Min explanatory variables. |
Coef.U |
a named vector of coefficients for the Max explanatory variables. |
RMSE.l |
root mean square error for the lower bound. |
RMSE.u |
root mean square error for the upper bound. |
References
Billard, L. and Diday, E. (2000) Regression analysis for interval-valued data. Data Analysis, Classification and Related Methods: Proceedings of the Seventh Conference of the International Federation of Classification Societies, Springer-Verlag, pp. 369-374.
Lima Neto, E.A. and De Carvalho, F.A.T. (2008). Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis, 52, 1500–1515.
See Also
Examples
##-- Continuing the MinMax() example:
data("Cardiological.MinMax", package = "iRegression")
ex.MinMax <- MinMax(PulseMin~SystMin+DiastMin,PulseMax~SystMax+DiastMax,data=Cardiological.MinMax)
ex.sum <- summary(ex.MinMax)
ex.sum
Summarizing Bivariate Symbolic Regression Method Fits
Description
summary
method for class bivar
.
Usage
## S3 method for class 'bivar'
summary(object, ...)
Arguments
object |
an object of class " |
.
... |
other arguments. |
Value
The function summary.bivar
returns the following elements, given an object of the class "bivar
",
Coefficients1 |
a named vector of coefficients for the explanatory variables of the model "1". |
Coefficients2 |
a named vector of coefficients for the explanatory variables of the model "2". |
RMSE1 |
root mean square error for the model "1". |
RMSE2 |
root mean square error for the model "2". |
Rho |
the estimative for the correlation coefficient between Y1 and Y2. |
Phi |
the estimative of the dispersion parameter. |
D |
the goodness-of-fit measure deviance for the current model. |
References
Lima Neto, E. A., Cordeiro, G. and De Carvalho, F.A.T. (2011). Bivariate symbolic regression models for interval-valued variables. Journal of Statistical Computation and Simulation (Print), 81, 1727–1744.
See Also
Examples
##-- Continuing the bivar() example:
data("soccer.bivar", package = "iRegression")
ex.bivar <- bivar(yMin~t1Min+t2Min, "identity", yMax~t1Max+t2Max, "identity", data=soccer.bivar)
ex.sum <- summary(ex.bivar)
ex.sum
Summarizing Constrained Centre and Range Method Fits
Description
summary
method for class ccrm
.
Usage
## S3 method for class 'ccrm'
summary(object, ...)
Arguments
object |
an object of class " |
... |
other arguments. |
Value
The function summary.ccrm
returns the following elements, given an object of the class "ccrm
",
Coef.C |
a named vector of coefficients for the Centre explanatory variables. |
Coef.R |
a named vector of coefficients for the Range explanatory variables. |
RMSE.l |
root mean square error for the lower bound. |
RMSE.u |
root mean square error for the upper bound. |
References
Lima Neto, E.A. and De Carvalho, F.A.T. (2010). Constrained linear regression models for symbolic interval-valued variables. Computational Statistics and Data Analysis, 54, 333–347.
See Also
Examples
##-- Continuing the ccrm() example:
data("Cardiological.CR", package = "iRegression")
ex.ccrm <- ccrm(PulseC~SystC+DiastC,PulseR~SystR+DiastR,data=Cardiological.CR)
ex.sum <- summary(ex.ccrm)
ex.sum
Summarizing Centre Method Fits
Description
summary
method for class cm
.
Usage
## S3 method for class 'cm'
summary(object, ...)
Arguments
object |
an object of class " |
... |
other arguments. |
Value
The function summary.cm
returns the following elements, given an object of the class "cm
",
coefficients |
a named vector of coefficients. |
RMSE.l |
root mean square error for the lower interval bound. |
RMSE.u |
root mean square error for the upper interval bound. |
References
Billard, L. and Diday, E. (2000) Regression analysis for interval-valued data. Data Analysis, Classification and Related Methods: Proceedings of the Seventh Conference of the International Federation of Classification Societies, Springer-Verlag, pp. 369-374.
Lima Neto, E.A. and De Carvalho, F.A.T. (2008). Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis, 52, 1500–1515.
See Also
Examples
##-- Continuing the cm() example:
data("Cardiological.MinMax", package = "iRegression")
ex.cm <- cm(PulseMin~SystMin+DiastMin,PulseMax~SystMax+DiastMax,data=Cardiological.MinMax)
ex.sum <- summary(ex.cm)
ex.sum
Summarizing Centre and Range Method Fits
Description
summary
method for class crm
.
Usage
## S3 method for class 'crm'
summary(object, ...)
Arguments
object |
an object of class " |
... |
other arguments. |
Value
The function summary.crm
returns the following elements, given an object of the class "crm
",
Coef.C |
a named vector of coefficients for the Centre explanatory variables. |
Coef.R |
a named vector of coefficients for the Range explanatory variables. |
RMSE.l |
root mean square error for the lower bound. |
RMSE.u |
root mean square error for the upper bound. |
References
Billard, L. and Diday, E. (2000) Regression analysis for interval-valued data. Data Analysis, Classification and Related Methods: Proceedings of the Seventh Conference of the International Federation of Classification Societies, Springer-Verlag, pp. 369-374.
Lima Neto, E.A. and De Carvalho, F.A.T. (2008). Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis, 52, 1500–1515.
See Also
Examples
##-- Continuing the crm() example:
data("Cardiological.CR", package = "iRegression")
ex.crm <- crm(PulseC~SystC+DiastC,PulseR~SystR+DiastR,data=Cardiological.CR)
ex.sum <- summary(ex.crm)
ex.sum