Type: | Package |
Title: | L1-Ball Prior for Sparse Regression |
Version: | 0.1.0 |
Author: | Maoran Xu and Leo L. Duan |
Maintainer: | Maoran Xu <maoranxu@ufl.edu> |
Description: | Provides function for the l1-ball prior on high-dimensional regression. The main function, l1ball(), yields posterior samples for linear regression, as introduced by Xu and Duan (2020) <doi:10.48550/arXiv.2006.01340>. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Depends: | R (≥ 3.1.0) |
Imports: | VGAM, stats |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.1.0 |
NeedsCompilation: | no |
Packaged: | 2020-07-20 01:52:51 UTC; maoran |
Repository: | CRAN |
Date/Publication: | 2020-07-24 17:10:02 UTC |
Fit the L1 prior
Description
This package provides an implementation of the Gibbs sampler, for using l1-ball prior with the regression likelihood y_i = X_i\theta+ \epsilon_i, \epsilon_i\sim {N}(0,\sigma^2)
.
Arguments
y |
A data vector, n by 1 |
X |
A design matrix, n by p |
b_w |
The parameter in |
step |
Number of steps to run the Markov Chain Monte Carlo |
burnin |
Number of burn-ins |
b_lam |
The parameter in |
Value
The posterior sample collected from the Markov Chain:
trace_theta:
\theta
trace_NonZero: The non-zero indicator
1(\theta_i\neq 0)
trace_Lam:
\lambda_i
trace_Sigma:
\sigma^2
Examples
n = 60
p = 100
X <- matrix(rnorm(n*p),n,p)
d = 5
w0 <- c(rep(0, p-d), rnorm(d)*0.1+1)
y = X%*% w0 + rnorm(n,0,.1)
trace <- l1ball(y,X,steps=2000,burnin = 2000)
plot(colMeans(trace$trace_theta))