When a network is partially observed (here, NAs in the adjacency matrix rather than 1 or 0 
  due to missing information between node pairs), it is possible to account for the underlying process
  that generates those NAs. 'missSBM', presented in 'Barbillon, Chiquet and Tabouy' (2022) <doi:10.18637/jss.v101.i12>,
  adjusts the popular stochastic block model from network data sampled under various missing data conditions, 
  as described in 'Tabouy, Barbillon and Chiquet' (2019) <doi:10.1080/01621459.2018.1562934>.
| Version: | 1.0.5 | 
| Depends: | R (≥ 3.4.0) | 
| Imports: | Rcpp, methods, igraph, nloptr, ggplot2, future.apply, R6, rlang, sbm, magrittr, Matrix, RSpectra | 
| LinkingTo: | Rcpp, RcppArmadillo, nloptr | 
| Suggests: | aricode, blockmodels, corrplot, future, testthat (≥ 2.1.0), covr, knitr, rmarkdown, spelling | 
| Published: | 2025-03-13 | 
| DOI: | 10.32614/CRAN.package.missSBM | 
| Author: | Julien Chiquet  [aut, cre],
  Pierre Barbillon  [aut],
  Timothée Tabouy [aut],
  Jean-Benoist Léger [ctb] (provided C++ implementaion of K-means),
  François Gindraud [ctb] (provided C++ interface to NLopt),
  großBM team [ctb] | 
| Maintainer: | Julien Chiquet  <julien.chiquet at inrae.fr> | 
| BugReports: | https://github.com/grossSBM/missSBM/issues | 
| License: | GPL-3 | 
| URL: | https://grosssbm.github.io/missSBM/ | 
| NeedsCompilation: | yes | 
| Language: | en-US | 
| Citation: | missSBM citation info | 
| Materials: | NEWS | 
| In views: | MissingData | 
| CRAN checks: | missSBM results |