Type: | Package |
Title: | Some Multivariate Analyses using Structural Equation Modeling |
Version: | 1.0 |
Date: | 2024-02-03 |
Depends: | R (≥ 3.5.0), OpenMx |
Imports: | stats |
Maintainer: | Mike Cheung <mikewlcheung@nus.edu.sg> |
Description: | A set of functions for some multivariate analyses utilizing a structural equation modeling (SEM) approach through the 'OpenMx' package. These analyses include canonical correlation analysis (CANCORR), redundancy analysis (RDA), and multivariate principal component regression (MPCR). It implements procedures discussed in Gu and Cheung (2023) <doi:10.1111/bmsp.12301>, Gu, Yung, and Cheung (2019) <doi:10.1080/00273171.2018.1512847>, and Gu et al. (2023) <doi:10.1080/00273171.2022.2141675>. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
LazyLoad: | yes |
LazyData: | yes |
ByteCompile: | yes |
URL: | https://github.com/mikewlcheung/mulsem |
BugReports: | https://github.com/mikewlcheung/mulsem/issues |
NeedsCompilation: | no |
Packaged: | 2024-02-03 01:52:09 UTC; mikewlcheung |
Author: | Mike Cheung |
Repository: | CRAN |
Date/Publication: | 2024-02-04 10:20:13 UTC |
Some Multivariate Analyses using Structural Equation Modeling
Description
A set of functions for some multivariate analyses utilizing a structural equation modeling (SEM) approach through the 'OpenMx' package. These analyses include canonical correlation analysis (CANCORR), redundancy analysis (RDA), and multivariate principal component regression (MPCR). It implements procedures discussed in Gu and Cheung (2023) <doi:10.1111/bmsp.12301>, Gu, Yung, and Cheung (2019) <doi:10.1080/00273171.2018.1512847>, and Gu et al. (2023) <doi:10.1080/00273171.2022.2141675>.
Author(s)
Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>, Fei Gu <gu@vt.edu>, Yiu-Fai Yung <Yiu-Fai.Yung@sas.com>
Maintainer: Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>
References
Gu, F., & Cheung, M. W.-L. (2023). A Model-based approach to multivariate principal component regression: Selection of principal components and standard error estimates for unstandardized regression coefficients. British Journal of Mathematical and Statistical Psychology, 76(3), 605-622. https://doi.org/10.1111/bmsp.12301
Gu, F., Yung, Y.-F., & Cheung, M. W.-L. (2019). Four covariance structure models for canonical correlation analysis: A COSAN modeling approach. Multivariate Behavioral Research, 54(2), 192-223. https://doi.org/10.1080/00273171.2018.1512847
Gu, F., Yung, Y.-F., Cheung, M. W.-L. Joo, B.-K., & Nimon, K. (2022). Statistical inference in redundancy analysis: A direct covariance structure modeling approach. Multivariate Behavioral Research, 58(5), 877-893. https://doi.org/10.1080/00273171.2022.2141675
Examples
## Canonical Correlation Analysis
cancorr(X_vars=c("Weight", "Waist", "Pulse"),
Y_vars=c("Chins", "Situps", "Jumps"),
data=sas_ex1)
## Redundancy Analysis
rda(X_vars=c("x1", "x2", "x3", "x4"),
Y_vars=c("y1", "y2", "y3"),
data=sas_ex2)
## Multivariate Principal Component Regression
mpcr(X_vars=c("AU", "CC", "CL", "CO", "DF", "FB", "GR", "MW"),
Y_vars=c("IDE", "IEE", "IOCB", "IPR", "ITS"),
pca="COR", pc_select=1,
data=Nimon21)
Correlation matrix of a model of motivation
Description
This dataset includes a correlation matrix of 12 variables (n=533) of a model of motivation reported by Chittum, Jones, and Carter (2019).
Usage
data("Chittum19")
Details
A list of data with the following structure:
- data
A 12x12 correlation matrix.
- n
A sample size.
Source
Chittum, J. R., Jones, B. D., & Carter, D. M. (2019). A person-centered investigation of patterns in college students' perceptions of motivation in a course. Learning and Individual Differences, 69, 94-107. https://doi.org/10.1016/j.lindif.2018.11.007
References
Gu, F., Yung, Y.-F., Cheung, M. W.-L. Joo, B.-K., & Nimon, K. (2023). Statistical inference in redundancy analysis: A direct covariance structure modeling approach. Multivariate Behavioral Research, 58(5), 877-893. https://doi.org/10.1080/00273171.2022.2141675
Examples
data(Chittum19)
## Redundancy Analysis
rda(X_vars=c("Empowerment", "Usefulness", "Success", "Interest", "Caring"),
Y_vars=c("Final_Exam", "Learning", "Course_Rating", "Instr_Rating",
"Effort", "Cog_Engage", "Cost"),
Cov=Chittum19$data, numObs=Chittum19$n)
Correlation matrix of artificial data
Description
This dataset includes a correlation matrix of the artificial data 9 variables used in Table 1 of Lambert, Wildt, and Durand (1988).
Usage
data("Lambert88")
Details
A 9x9 correlation matrix.
Source
Lambert, Z. V., Wildt, A. R., & Durand, R. M. (1988). Redundancy analysis: An alternative to canonical correlation and multivariate multiple regression in exploring interset associations. Psychological Bulletin, 104(2), 282-289. https://doi.org/10.1037/0033-2909.104.2.282
References
Gu, F., Yung, Y.-F., Cheung, M. W.-L. Joo, B.-K., & Nimon, K. (2023). Statistical inference in redundancy analysis: A direct covariance structure modeling approach. Multivariate Behavioral Research, 58(5),877-893. https://doi.org/10.1080/00273171.2022.2141675
Examples
data(Lambert88)
## Redundancy Analysis
rda(X_vars=paste0("x", 1:5), Y_vars=paste0("y", 1:4), Cov=Lambert88, numObs=100)
Raw data used in Nimon, Joo, and Bontrager (2021)
Description
This dataset includes the raw data of 13 variables reported by Nimon, Joo, and Bontrager (2021).
Usage
data("Nimon21")
Details
A data frame of 13 variables.
Source
Nimon, K., Joo, B.-K. (Brian), & Bontrager, M. (2021). Work cognitions and work intentions: A canonical correlation study. Human Resource Development International, 24(1), 65-91. https://doi.org/10.1080/13678868.2020.1775038
References
Gu, F., & Cheung, M. W.-L. (2023). A Model-based approach to multivariate principal component regression: Selection of principal components and standard error estimates for unstandardized regression coefficients. British Journal of Mathematical and Statistical Psychology, 76(3), 605-622. https://doi.org/10.1111/bmsp.12301 Gu, F., Yung, Y.-F., Cheung, M. W.-L. Joo, B.-K., & Nimon, K. (2023). Statistical inference in redundancy analysis: A direct covariance structure modeling approach. Multivariate Behavioral Research, 58(5), 877-893. https://doi.org/10.1080/00273171.2022.2141675
Examples
data(Nimon21)
## Redundancy Analysis
rda(X_vars=c("AU", "CC", "CL", "CO", "DF", "FB", "GR", "MW"),
Y_vars=c("IDE", "IEE", "IOCB", "IPR", "ITS"),
data=Nimon21)
## Multivariate Principal Component Regression
mpcr(X_vars=c("AU", "CC", "CL", "CO", "DF", "FB", "GR", "MW"),
Y_vars=c("IDE", "IEE", "IOCB", "IPR", "ITS"),
pca="COR", pc_select=1,
data=Nimon21)
Correlation matrix of a model of disgust
Description
This dataset includes a correlation matrix of 13 variables (n=679) between five subscales (y1 to y5) of the Disguest Emotion Scale and eight subscales (x1 to x8) of the Disgust Scale reported by Thorndike (2000, p. 238).
Usage
data("Thorndike00")
Details
A list of data with the following structure:
- data
A 13x13 correlation matrix.
- n
A sample size.
Source
Thorndike, R. M. (2000). Canonical correlation analysis. In H. E. A. Tinsley & S. D. Brown (Eds.), Handbook of applied multivariate statistics and mathematical modeling (pp. 237-263). San Diego, CA: Academic Press.
References
Gu, F., Yung, Y.-F., & Cheung, M. W.-L. (2019). Four covariance structure models for canonical correlation analysis: A COSAN modeling approach. Multivariate Behavioral Research, 54(2), 192-223. https://doi.org/10.1080/00273171.2018.1512847
Examples
data(Thorndike00)
## Canonical Correlation Analysis
## Note. We swap the X_vars and Y_vars because cancorr() expects that
## X_vars cannot have more variables than Y_vars.
cancorr(X_vars=c("y1", "y2", "y3", "y4", "y5"),
Y_vars=c("x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8"),
Cov=Thorndike00$data, numObs=Thorndike00$n)
Canonical Correlation Analysis
Description
It conducts a canonical correlation analysis using the OpenMx package. Missing data are handled with the full information maximum likelihood method when raw data are available. It provides standard errors on the estimates.
Usage
cancorr(X_vars, Y_vars, data=NULL, Cov, numObs,
model=c("CORR-W", "CORR-L", "COV-W", "COV-L"),
extraTries=50, ...)
Arguments
X_vars |
A vector of characters of the X variables. |
Y_vars |
A vector of characters of the Y variables. |
data |
A data frame of raw data. |
Cov |
A covariance or correlation matrix if |
numObs |
A sample size if |
model |
Four models defined in Gu, Yung, and Cheung
(2019). |
extraTries |
This function calls |
... |
Value
A list of output with class CanCor
. It stores the model in
OpenMx objects. The fitted object is in the slot of mx.fit
.
Note
cancorr
expects that there are equal or more number of
variables in Y_vars
. If there are fewer variables in
Y_vars
, you may swap between X_vars
and Y_vars
.
Author(s)
Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>
References
Gu, F., Yung, Y.-F., & Cheung, M. W.-L. (2019). Four covariance structure models for canonical correlation analysis: A COSAN modeling approach. Multivariate Behavioral Research, 54(2), 192-223. https://doi.org/10.1080/00273171.2018.1512847
See Also
Multivariate Principal Component Regression (MPCR)
Description
It conducts a multivariate principal component regression analysis using the OpenMx package. Missing data are handled with the full information maximum likelihood method when raw data are available. It provides standard errors on the estimates.
Usage
mpcr(X_vars, Y_vars, data=NULL, Cov, Means=NULL, numObs, pca=c("COV", "COR"),
pc_select=NULL, extraTries=50, ...)
Arguments
X_vars |
A vector of characters of the X variables. |
Y_vars |
A vector of characters of the Y variables. |
data |
A data frame of raw data. |
Cov |
A covariance or correlation matrix if |
Means |
An optional mean vector if |
numObs |
A sample size if |
pca |
Whether the principal component analysis is based unstandardized |
pc_select |
PCs selected in the regression analysis. For example,
|
extraTries |
This function calls |
... |
Value
A list of output with class MPCR
. It stores the model in
OpenMx objects. The fitted object is in the slot of mx.fit
.
Author(s)
Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>
References
Gu, F., & Cheung, M. W.-L. (2023). A Model-based approach to multivariate principal component regression: Selection of principal components and standard error estimates for unstandardized regression coefficients. British Journal of Mathematical and Statistical Psychology, 76(3), 605-622. https://doi.org/10.1111/bmsp.12301
See Also
Print Methods for various Objects
Description
Print method for CanCorr
and RDA
objects.
Usage
## S3 method for class 'CanCorr'
print(x, digits=4, ...)
## S3 method for class 'RDA'
print(x, digits=4, ...)
## S3 method for class 'MPCR'
print(x, digits=4, ...)
Arguments
x |
An object returned from the class of either |
digits |
Number of digits in printing the matrices. The default is 4. |
... |
Unused. |
Value
No return value, called for side effects
Author(s)
Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>
Redundancy Analysis
Description
It conducts a redundancy analysis using the OpenMx package. Missing data are handled with the full information maximum likelihood method when raw data are available. It provides standard errors on the standardized estimates.
Usage
rda(X_vars, Y_vars, data=NULL, Cov, numObs, extraTries=50, ...)
Arguments
X_vars |
A vector of characters of the X variables. |
Y_vars |
A vector of characters of the Y variables. |
data |
A data frame of raw data. |
Cov |
A covariance or correlation matrix if |
numObs |
A sample size if |
extraTries |
This function calls |
... |
Value
A list of output with class RDA
. It stores the model in
OpenMx objects. The fitted object is in the slot of mx.fit
.
Author(s)
Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>
References
Gu, F., Yung, Y.-F., Cheung, M. W.-L. Joo, B.-K., & Nimon, K. (2023). Statistical inference in redundancy analysis: A direct covariance structure modeling approach. Multivariate Behavioral Research, 58(5, 877-893. https://doi.org/10.1080/00273171.2022.2141675
See Also
Sample data for canonical correlation analysis from the SAS manual
Description
This dataset includes six variables of fitness club data from the SAS manual.
Usage
data("sas_ex1")
Details
A 20x6 data matrix.
Source
https://documentation.sas.com/doc/en/statcdc/14.2/statug/statug_cancorr_example01.htm
Examples
data(sas_ex1)
## Canonical Correlation Analysis
cancorr(X_vars=c("Weight", "Waist", "Pulse"),
Y_vars=c("Chins", "Situps", "Jumps"),
data=sas_ex1)
Sample data for redundancy analysis from the SAS manual
Description
This dataset includes seven variables from the SAS manual.
Usage
data("sas_ex2")
Details
A 10x7 data matrix.
Source
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.3/statug/statug_transreg_details23.htm
Examples
data(sas_ex2)
## Redundancy Analysis
rda(X_vars=c("x1", "x2", "x3", "x4"),
Y_vars=c("y1", "y2", "y3"),
data=sas_ex2)