
The multiDEGGs package test for differential gene-gene correlations
across different groups of samples in multi omic data.
Specific gene-gene interactions can be explored and gene-gene pair
regression plots can be interactively shown.
Install from CRAN:
install.packages("multiDEGGs")
Install from Github:
devtools::install_github("elisabettasciacca/multiDEGGs")
Load package and sample data
library(multiDEGGs)  
data("synthetic_metadata")  
data("synthetic_rnaseqData")  
data("synthetic_proteomicData")
data("synthetic_OlinkData")   Generate differential networks:
assayData_list <- list("RNAseq" = synthetic_rnaseqData,
                       "Proteomics" = synthetic_proteomicData,
                       "Olink" = synthetic_OlinkData)
deggs_object <- get_diffNetworks(assayData = assayData_list,
                                 metadata = synthetic_metadata,
                                 category_variable = "response",
                                 regression_method = "lm",
                                 padj_method = "bonferroni",
                                 verbose = FALSE,
                                 show_progressBar = FALSE,
                                 cores = 2)Visualise interactively (will open a shiny interface)
View_diffNetworks(deggs_object)Get a table listing all the significant interactions found in each category
get_multiOmics_diffNetworks(deggs_object, sig_threshold = 0.05)Plot differential regression fits for a single interaction
plot_regressions(deggs_object,                  assayDataName = "RNAseq",                  gene_A = "MTOR",                   gene_B = "AKT2",                  legend_position = "bottomright")
citation("multiDEGGs")