Encoding: | UTF-8 |
Type: | Package |
Version: | 1.3.2 |
Date: | 2023-01-19 |
Title: | Analyzing Survival Data from an Illness-Death Model |
Depends: | R (≥ 2.8.1),survival,base |
Description: | Contains functions for data preparation, prediction of transition probabilities, estimating semi-parametric regression models and for implementing nonparametric estimators for other quantities. See Meira-Machado and Roca-Pardiñas (2011) <doi:10.18637/jss.v038.i03>. |
License: | GPL-3 |
LazyLoad: | yes |
LazyData: | yes |
NeedsCompilation: | no |
Packaged: | 2023-01-19 20:29:21 UTC; User |
Author: | Luis Meira-Machado
|
Maintainer: | Luis Meira-Machado <lmachado@math.uminho.pt> |
Repository: | CRAN |
Date/Publication: | 2023-01-20 16:00:09 UTC |
Analyzing survival data from an illness-death model
Description
p3state.msm provides functions for estimating semi-parametric regression models but also to implement nonparametric estimators for the transition probabilities. The methods can also be used in progressive three-state models. In progressive three-state models, estimators for other quantities such as the bivariate distribution function (for the sequentially ordered events) are also given.
Details
Package: | p3state.msm |
Type: | Package |
Version: | 1.3.2 |
Date: | 2023-01-19 |
License: | GPL-3 |
LazyLoad: | yes |
LazyData: | yes |
Author(s)
Luis Meira-Machado, Javier Roca Pardinas roca@uvigo.es
and Artur Araújo artur.stat@gmail.com
Maintainer: Luis Meira-Machado lmachado@math.uminho.pt
References
Crowley J., Hu M. (1977). Covariance analysis of heart transplant survival data. Journal of the American Statistical Association, 72(357), 27-36. doi:10.2307/2286902
Meira-Machado L., De Una-Alvarez J., Cadarso-Suarez C. (2006). Nonparametric estimation of transition probabilities in a non-Markov illness-death model. Lifetime Data Analysis, 12(3), 325-344. doi:10.1007/s10985-006-9009-x
de Una-Alvarez J., Meira-Machado L. (2008). A simple estimator of the bivariate distribution function for censored gap times. Statistics & Probability Letters, 78(15), 2440-2445. doi:10.1016/j.spl.2008.02.031
Meira-Machado L., Roca-Pardinas J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi:10.18637/jss.v038.i03
Bivariate distribution function
Description
Computation of the bivariate distribution function.
Usage
Biv(object, time1, time2)
Arguments
object |
Component datafr of an object of class p3state. |
time1 |
The first time for obtaining estimates for the transition probabilities, bivariate distribution function. NULL is equivalent to 0. |
time2 |
The second time for obtaining estimates for the bivariate distribution function. |
Value
Returns a single value.
Author(s)
Luis Meira-Machado, Javier Roca-Pardinas and Artur Araújo
References
Meira-Machado L., Roca-Pardinas J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi:10.18637/jss.v038.i03
See Also
Examples
data(heart2)
res.p3state<-p3state(heart2)
Biv(res.p3state,time1=30,time2=300)
Regression dataset
Description
Returns the input data in a different format. Provides the adequate dataset for implementing regression models.
Usage
data.creation.reg(data)
Arguments
data |
A data.frame with at least 5 variables: times1 (time of the intermediate event/censoring time), delta (indicator of transition to the intermediate event), times2 (time to the final event/censoring time), time (times1 + times2) and status (censoring indicator: "dead"=1,"alive"=0). The remaining variables in the data.frame are left for the covariates. |
Value
A data.frame in a counting process format.
Author(s)
Luis Meira-Machado, Javier Roca-Pardinas and Artur Araújo
References
Meira-Machado L., Roca-Pardinas J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi:10.18637/jss.v038.i03
More Stanford heart transplant data
Description
This contains the Stanford heart transplant data in a different format.
The main data set is in (heart
).
Survival of patients on the waiting list for the Stanford heart transplant program.
Usage
data(heart2)
Format
A data frame with 103 observations on the following 8 variables.
times1
Time of transplant/censoring time.
delta
Transplant indicator.
times2
Time to death since the transplant/censoring time.
time
times1 + times2
status
Censoring indicator: dead=1, alive=0.
age
Age-48 years.
year
Year of acceptance; in years after 1 Nov 1967.
surgery
Prior bypass surgery; 1=yes.
References
Crowley J., Hu M. (1977). Covariance analysis of heart transplant survival data. Journal of the American Statistical Association, 72(357), 27-36. doi:10.2307/2286902
Inference in progressive multi-state models with three states
Description
This function provides nonparametric estimates in progressive multi-state models with three states (illness-death model and three-state model). Also fits semi-parametric Cox models in a multi-state framework (one for each transition).
Usage
p3state(data, coxdata=NULL, formula=NULL, regression=NULL)
Arguments
data |
A data.frame in which to interpret the variables named in the covariates. A data frame with at least 5 variables: times1 (time of the intermediate event/censoring time), delta (indicator of transition to the intermediate event), times2 (time to the final event/censoring time), time (times1 + times2) and status (censoring indicator: "dead"=1, "alive"=0). The remaining variables in the data.frame are left for the covariates. |
coxdata |
Data set in a counting process data-structure.
This data set can be obtained using |
formula |
A formula giving the vector of covariates.
For example |
.
regression |
A logical variable indicating whether you want the regression model. |
Details
Multi-state models may be considered a generalization of survival analysis where survival is the ultimate outcome of interest but where intermediate (transient) states are identified. The influence of the intermediate events on survival may be investigated through the effect of the time-dependent covariate (using the Cox regression model with time-dependent covariates; TDCM). However, these covariates can also be re-expressed as a multi-state model with states based on the values of the covariate (typically coded as 1=yes; 0=no). If all subjects observe the intermediate event then the time-dependent covariate makes it possible to use the progressive three-state model. Otherwise makes it feasible to use an illness-death model. In these models, issues of interest include the estimation of transition probabilities and assessing the effects of individual risk factors.
Value
Returns a list of the following items:
descriptives |
Vector with observed transitions between states. |
datafr |
data.frame to be used for obtaining the nonparametric estimates and for plotting purposes. |
tdcm |
Object of class ‘coxph’ with the fit of the Cox model with time-dependent covariates. |
msm12 |
Object of class ‘coxph’ with the fit of the Cox model for transition from state 1 to state 2. |
msm13 |
Object of class ‘coxph’ with the fit of the Cox model for transition from state 1 to state 3 (only for the progressive three-state model). |
cmm23 |
Object of class ‘coxph’ with the fit of the Cox Markov model for transition from state 2 to state 3. |
tma |
Object of class ‘coxph’ with the fit of a Cox model for testing the Markov assumption. |
Author(s)
Luis Meira-Machado, Javier Roca-Pardinas and Artur Araújo
References
Meira-Machado L., De Una-Alvarez J., Cadarso-Suarez C. (2006). Nonparametric estimation of transition probabilities in a non-Markov illness-death model. Lifetime Data Analysis, 12(3), 325-344. doi:10.1007/s10985-006-9009-x
de Una-Alvarez J., Meira-Machado L. (2008). A simple estimator of the bivariate distribution function for censored gap times. Statistics & Probability Letters, 78(15), 2440-2445. doi:10.1016/j.spl.2008.02.031
Meira-Machado L., Roca-Pardinas J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi:10.18637/jss.v038.i03
Examples
data(heart2)
res.p3state <- p3state(heart2, formula=~age+year+surgery)
summary(res.p3state)
##Only regression
summary(res.p3state, model="TDCM")
summary(res.p3state, model="CMM")
##without regression
summary(res.p3state, time1=20, time2=200)
##Both
summary(res.p3state, estimate=TRUE, time1=20, time2=200, model="CMM")
##Just for illustration purposes we create a new subset by restricting
##the original data set from those subjects experiencing the transplant
## (progressive three-state model)
p <- which((heart2$delta==0 & heart2$status==0) | heart2$delta==1)
exampledata <- heart2[p,]
res2.p3state <- p3state(exampledata)
summary(res2.p3state)
Transition probabilities
Description
Computation of the transition probabilities.
Usage
pLIDA(object, time1, time2,tp=NULL)
Arguments
object |
Component datafr of an object of class p3state. |
time1 |
The first time for obtaining estimates for the transition probabilities, bivariate distribution function. NULL is equivalent to 0. |
time2 |
The second time for obtaining estimates for the bivariate distribution function. |
tp |
Optional argument: tp="all" (default value) to obtain all the transition probabilities p11, p12 and p22; tp="p11" to obtain only p11; tp="p12" to obtain only p12; tp="p22" to obtain only p22. |
Value
Returns a single value if argument tp
equals "p11", "p12", or "p22".
Returns a list if argument tp
equals "all".
Author(s)
Luis Meira-Machado, Javier Roca-Pardinas and Artur Araújo
References
Meira-Machado L., Roca-Pardinas J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi:10.18637/jss.v038.i03
See Also
Examples
data(heart2)
res.p3state<-p3state(heart2)
pLIDA(res.p3state,time1=30,time2=300)
Plot Method for an p3state object
Description
Plot method for an object of class ‘p3state’. Draws the estimated transition probabilities, bivariate distribution of the gap times and marginal distribution of the second gap time (the last two only available for the progressive three-state model)
Usage
## S3 method for class 'p3state'
plot(x, plot.trans = NULL, plot.marginal = NULL,
plot.bivariate = NULL, time1, time2, xlab, ylab, zlab, col, col.biv = NULL, ...)
Arguments
x |
An object of class ‘p3state’. |
plot.trans |
Graphical output for the transition probabilities. By default, plot.trans=FALSE. Possible values are: "all", "P11", "P12", "P22" and "P23". |
plot.marginal |
Graphical output for the marginal distribution of the second time (only available for the progressive three-state model). By default, plot.marginal=FALSE. |
plot.bivariate |
Graphical output for the bivariate distribution (only available for the progressive three-state model). By default, plot.bivariate=FALSE. |
time1 |
The first time for obtaining estimates of the transition probabilities, bivariate distribution function. NULL is equivalent to 0. |
time2 |
The second time for obtaining estimates of the bivariate distribution function. |
xlab |
x-axix label. |
ylab |
y-axix label. |
zlab |
z-axix label (only for the bivariate distribution). |
col |
Colour for the bivariate plot. |
col.biv |
A logical variable indicating whether you want color to be used in the filled.contour plot. By default col.biv = FALSE. |
... |
Further arguments for plot. |
Value
No value is returned.
Author(s)
Luis Meira-Machado, Javier Roca-Pardinas and Artur Araújo
References
Meira-Machado L., Roca-Pardinas J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi:10.18637/jss.v038.i03
See Also
Examples
data(heart2)
res.p3state<-p3state(heart2)
##Only transition probabilities
plot(res.p3state,plot.trans="all",time1=20,time2=100)
##Example of three-state model. All plots.
p<-which((heart2$delta==0 & heart2$status==0) | heart2$delta==1)
inputdata<-heart2[p,]
res2.p3state<-p3state(inputdata)
plot(res2.p3state,plot.trans="all",time1=20,
time2=200,plot.bivariate=TRUE,plot.marginal=TRUE)
Summary Methods for an p3state Object
Description
Provides results for an object of class ‘p3state’. It gives the estimated transition probabilities, bivariate distribution of the gap times and marginal distribution of the second gap time (the last two only available for the progressive three-state model). Also provides the results for the fit of semi-parametric Cox regression models.
Usage
## S3 method for class 'p3state'
summary(object, model = NULL, covmat = NULL,
estimate = NULL, time1 = NULL, time2 = NULL, ...)
Arguments
object |
An object of class ‘p3state’. |
model |
A character string specifying which model(s) to fit. Possible values are "TDCM", "CMM" and "CSMM". If NULL none of the regression models will be implemented. |
covmat |
Return the variance-covariance matrices? By default covmat=FALSE. |
estimate |
If TRUE nonparametric estimates are given. These include: transition probabilities, bivariate distribution function and marginal distribution of the second time (the last two only for the progressive three-state model). |
time1 |
The first time for obtaining estimates of the transition probabilities, bivariate distribution function. NULL is equivalent to 0. |
time2 |
The second time for obtaining estimates of the bivariate distribution function. |
... |
Further arguments for summary. |
Value
No value is returned.
Author(s)
Luis Meira-Machado, Javier Roca-Pardinas and Artur Araújo
References
Meira-Machado L., Roca-Pardinas J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi:10.18637/jss.v038.i03
See Also
Examples
data(heart2)
res.p3state<-p3state(heart2, formula=~age+year)
summary(res.p3state,model="CMM",time1=20,time2=100)