Type: | Package |
Title: | Path Component Fit Indices for Latent Structural Equation Models |
Version: | 1.0.5 |
Description: | Functions for computing fit indices for evaluating the path component of latent variable structural equation models. Available fit indices include RMSEA-P and NSCI-P originally presented and evaluated by Williams and O'Boyle (2011) <doi:10.1177/1094428110391472> and demonstrated by O'Boyle and Williams (2011) <doi:10.1037/a0020539> and Williams, O'Boyle, & Yu (2020) <doi:10.1177/1094428117736137>. Also included are fit indices described by Hancock and Mueller (2011) <doi:10.1177/0013164410384856>. |
License: | GPL-3 |
Depends: | lavaan |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.1.1 |
NeedsCompilation: | no |
Packaged: | 2020-09-02 03:23:21 UTC; steve |
Author: | Steven Andrew Culpepper
|
Maintainer: | Steven Andrew Culpepper <sculpepp@illinois.edu> |
Repository: | CRAN |
Date/Publication: | 2020-09-02 05:40:10 UTC |
pathmodelfit: Path Component Fit Indices for Latent Structural Equation Models
Description
Functions for computing fit indices for evaluating the path component of latent variable structural equation models. Available fit indices include RMSEA-P and NSCI-P originally presented and evaluated by Williams and O'Boyle (2011) <doi:10.1177/1094428110391472> and demonstrated by O'Boyle and Williams (2011) <doi:10.1037/a0020539> and Williams, O'Boyle, & Yu (2020) <doi:10.1177/1094428117736137>. Also included are fit indices described by Hancock and Mueller (2011) <doi:10.1177/0013164410384856>.
Author(s)
Maintainer: Steven Andrew Culpepper sculpepp@illinois.edu (ORCID)
Authors:
Larry Williams larry.williams@ttu.edu
References
Hancock, G. R., & Mueller, R. O. (2011). The reliability paradox in assessing structural relations within covariance structure models. Educational and Psychological Measurement, 71(2), 306-324.
McNeish, D., & Hancock, G. R. (2018). The effect of measurement quality on targeted structural model fit indices: A comment on Lance, Beck, Fan, and Carter (2016). Psychological Methods, 23(1), 184–190. https://doi.org/10.1037/met0000157
O'Boyle, E. H., Jr., & Williams, L. J. (2011). Decomposing model fit: Measurement vs. theory in organizational research using latent variables. Journal of Applied Psychology, 96(1), 1–12. https://doi.org/10.1037/a0020539
Williams, L. J., & O’Boyle, E. H. (2011). The myth of global fit indices and alternatives for assessing latent variable relations. Organizational Research Methods, 14, 350-369.
Williams, L. J., O’Boyle, E. H., & Yu, J. (2020). Condition 9 and 10 tests of model confirmation: A review of James, Mulaik, and Brett (1982) and contemporary alternatives. Organizational Research Methods, 23, 1, 6-29.
Examples
library(lavaan)
model4 <- '
Ldrrew =~ LdrrewI1 + LdrrewI2 + LdrrewI3
Jobcom =~ JobcomI1 + JobcomI2 + JobcomI3
Jobsat =~ JobsatI1 + JobsatI2 + JobsatI3
Orgcom =~ OrgcomI1 + OrgcomI2 + OrgcomI3
Jobsat ~ Ldrrew + Jobcom
Orgcom ~ Jobsat'
data(mediationVC)
fit <- sem(model4, sample.cov = mediationVC, sample.nobs = 232)
pathmodelfit(fit)
Williams and Anderson (1994) Mediated Multifoci Model Dataset
Description
This data set is from Williams and Anderson (1994) on the study of methods effects in organizational research using latent-variable models.
Usage
mediationVC
Format
A variance-covariance matrix
for 232 observations and 12 variables. The variables are indicators of four constructss: 1) job satisfaction (Jobsat; 10 items), 2) organizational committment (Orgcom; 8 items), 3) leader-contingent reward behavior (Ldrrew; 10 items), and 4) job complexity (Jobcom; 6 items). The individual item responses were used to create three, total-score indicators for each construct defined as follows:
JobsatI1
Job satisfaction indicator 1
JobsatI2
Job satisfaction indicator 2
JobsatI3
Job satisfaction indicator 3
OrgcomI1
Organizational committment indicator 1
OrgcomI2
Organizational committment indicator 2
OrgcomI3
Organizational committment indicator 3
LdrrewI1
Leader-contingent reward behavior indicator 1
LdrrewI2
Leader-contingent reward behavior indicator 2
LdrrewI3
Leader-contingent reward behavior indicator 3
JobcomI1
Job complexity indicator 1
JobcomI2
Job complexity indicator 2
JobcomI3
Job complexity indicator 3
Author(s)
Steven Culpepper and Larry Williams
Source
Williams, L. J. & Anderson, S. E. (1994). An alternative approach to method effects by using latent-variable models: Applications in organizational behavior research. Journal of Applied Psychology, 79, 323-331.
Compute fit indices for the path component of latent variable structural equation models.
Description
pathmodelfit
computes fit indices for evaluating the path component of latent variable structural equation models. Available fit indices include RMSEA-P and NSCI-P originally presented and evaluated by Williams and O'Boyle (2011) and demonstrated by O'Boyle and Williams (2011) and Williams, O'Boyle, & Yu, (2019). Also included are fit indices described by Hancock and Mueller (2011).
Usage
pathmodelfit(lavaanoutput)
Arguments
lavaanoutput |
A |
Value
A vector with RMSEA-P, a p-value for the chi-square test comparing the theoretical and saturated model, a 90 percent confidence interval for RMSEA-P, NSCI-P, and SRMRs, RMSEAs, TLIs, and CFIs.
References
Hancock, G. R., & Mueller, R. O. (2011). The reliability paradox in assessing structural relations within covariance structure models. Educational and Psychological Measurement, 71(2), 306-324.
McNeish, D., & Hancock, G. R. (2018). The effect of measurement quality on targeted structural model fit indices: A comment on Lance, Beck, Fan, and Carter (2016). Psychological Methods, 23(1), 184–190. https://doi.org/10.1037/met0000157
O'Boyle, E. H., Jr., & Williams, L. J. (2011). Decomposing model fit: Measurement vs. theory in organizational research using latent variables. Journal of Applied Psychology, 96(1), 1–12. https://doi.org/10.1037/a0020539
Williams, L. J., & O’Boyle, E. H. (2011). The myth of global fit indices and alternatives for assessing latent variable relations. Organizational Research Methods, 14, 350-369.
Williams, L. J., O’Boyle, E. H., & Yu, J. (2020). Condition 9 and 10 tests of model confirmation: A review of James, Mulaik, and Brett (1982) and contemporary alternatives. Organizational Research Methods, 23, 1, 6-29.
Examples
library(lavaan)
model4 <- '
Ldrrew =~ LdrrewI1 + LdrrewI2 + LdrrewI3
Jobcom =~ JobcomI1 + JobcomI2 + JobcomI3
Jobsat =~ JobsatI1 + JobsatI2 + JobsatI3
Orgcom =~ OrgcomI1 + OrgcomI2 + OrgcomI3
Jobsat ~ Ldrrew + Jobcom
Orgcom ~ Jobsat'
data(mediationVC)
fit <- sem(model4, sample.cov = mediationVC, sample.nobs = 232)
pathmodelfit(fit)