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pencal: an R Package for the Dynamic
Prediction of Survival with Many
Longitudinal Predictors
by Mirko Signorelli

Abstract In survival analysis, longitudinal information on the health status of a patient can be used
to dynamically update the predicted probability that a patient will experience an event of interest.
Traditional approaches to dynamic prediction such as joint models become computationally unfeasible
with more than a handful of longitudinal covariates, warranting the development of methods that
can handle a larger number of longitudinal covariates. We introduce the R package pencal, which
implements a Penalized Regression Calibration (PRC) approach that makes it possible to handle many
longitudinal covariates as predictors of survival. pencal uses mixed-effects models to summarize the
trajectories of the longitudinal covariates up to a prespecified landmark time, and a penalized Cox
model to predict survival based on both baseline covariates and summary measures of the longitudinal
covariates. This article illustrates the structure of the R package, provides a step by step example
showing how to estimate PRC, compute dynamic predictions of survival and validate performance,
and shows how parallelization can be used to significantly reduce computing time.

1 Introduction

Risk prediction models (Steyerberg, 2009) allow to estimate the probability that an event of interest
will occur in the future. Such models are commonly employed in the biomedical field to estimate the
probability that an individual will experience an adverse event, and their output can be used to inform
patients, monitor their disease progression, and guide treatment decisions.

Traditionally, risk prediction models only used covariate values available at the beginning of the
observation period to predict survival. Thus, predictions based on such models could not exploit
information gathered at later time points. Because information about the evolution of time-dependent
covariates may influence the occurrence of the survival outcome, it is desirable to be able to dynami-
cally update predictions of survival as more longitudinal information becomes available.

Dynamic prediction models employ both baseline and follow-up information to predict survival,
and they can be used to update predictions each time new follow-up data are gathered. Three
commonly-used statistical methods for dynamic prediction are the time-dependent Cox model, joint
modelling of longitudinal and survival data, and landmarking approaches.

The time-dependent Cox model (Therneau and Grambsch, 2000) is an extension of the Cox
proportional hazards model that allows for the inclusion of time-dependent covariates. It assumes
the value of a time-dependent covariate to be constant between two observation times, and it is only
suitable for exogenous time-dependent covariates. The model can be estimated using the R package
survival (Therneau and Grambsch, 2000).

Joint models for longitudinal and survival outcomes (Henderson et al., 2000) are shared random
effects models that combine a submodel for the longitudinal covariates (typically linear mixed models)
and one for the survival outcome (usually a Cox model or a parametric survival model). Thanks to the
shared random effects formulation, such models are capable to account for a possible interdependence
between the longitudinal covariates and the survival outcome. However, the estimation of the shared
random effects model is a computationally intensive task that has so far restricted the application of
joint models to problems with one or few longitudinal covariates. Over the years, several alternative
approaches to the estimation of joint models have been proposed, among which are the R packages JM
(Rizopoulos, 2010), JMbayes (Rizopoulos, 2014), joineR (Philipson et al., 2018) and joineRML (Hickey
et al., 2018).

Lastly, landmarking (Van Houwelingen, 2007) is an approach that dynamically adjusts predictions
by refitting the prediction model using all subjects that are still at risk at a given landmark time.
Landmarking typically involves two modelling steps. In the first step, repeated measurements of
the time-dependent covariates up to the landmark time are summarized using either a summary
measure or a suitable statistical model. In the second step, the summaries thus computed are used
as predictors of survival alongside with the time-independent covariates. The simplest form of
landmarking is the last observation carried forward (LOCF) method, which uses the last available
measurement of each longitudinal covariate taken up to the landmark time as summary. The main
advantage of this approach is that it is easy to implement, it is computationally straightforward and,
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thus, it does not require the development of dedicated software. Limitations of LOCF landmarking
include the fact that it discards all previous repeated measurements, failing to make efficient use of
the available longitudinal information, and it does not perform any measurement error correction
on the longitudinal covariates (this may be particularly desirable for biomarkers and diagnostic tests
that are typically subject to measurement error). To overcome these limitations, mixed-effects models
can be used to model the trajectories of the longitudinal covariates (Signorelli et al., 2021; Putter and
van Houwelingen, 2022; Devaux et al., 2023). While Putter and van Houwelingen (2022) focused on
situations with a single longitudinal marker, Signorelli et al. (2021) and Devaux et al. (2023) proposed
two methods, respectively called Penalized Regression Calibration (PRC) and DynForest, that can
deal with a large number of longitudinal covariates. Notably, the estimation of PRC and DynForest is
much more complex than that of LOCF landmarking, warranting dedicated software that can facilitate
the implementation of such methods. PRC is implemented in the R package pencal (Signorelli, 2023),
whereas DynForest in the R package DynForest (Devaux et al., 2023).

In this article we introduce the R package pencal, which implements the PRC approach. PRC
uses mixed-effects models to describe and summarize the longitudinal biomarker trajectories; the
summaries thus obtained are used as predictors of survival in a Cox model alongside with any
relevant time-independent covariate. To account for the possible availability of a large (potentially
high-dimensional) number of time-independent and longitudinal covariates and to reduce the risk of
overfitting the training data, PRC uses penalized maximum likelihood to estimate the aforementioned
Cox model.

The remainder of the article is organized as follow. In the next section we describe the dynamic
prediction problem, the PRC statistical methodology (Signorelli et al., 2021) behind pencal, and the
problem of evaluating the model’s predictive performance. Next we provide a general overview of
the R package, discussing the implementation details of its functions for model estimation, prediction
and performance validation. Furthermore, we provide a step by step example that shows how to use
pencal to implement dynamic prediction on a real-world dataset that comprises several longitudinal
covariates. We present the results of 4 simulations that assess the relationship between computing
time and sample size, number of covariates and number of bootstrap samples used to validate model
performance, showing how parallelization may reduce computing time significantly. Lastly, we
provide some final remarks, and discuss limitations and possible extensions of the current approach.

2 Statistical methods

2.1 Input data and notation

We consider a setting where n subjects are followed from time t = 0 until an event of interest occurs.
For each subject i ∈ {1, ..., n} we observe the pair (ti, δi), where δi is a dummy variable that indicates
whether the event is observed at time t = ti (δi = 1), or the observation of the event is right-censored
at t = ti (δi = 0). Thus, ti corresponds to the survival time if δi = 1, and to the censoring time if δi = 0.

In addition to (ti, δi), we assume that both baseline and follow-up information is collected from
the same subjects, and that the number of variables gathered may be large. We consider a flexible
unbalanced study design where the number and timing of the follow-up times can differ across
subjects. We denote by mi ≥ 1 the number of repeated measurements available for subject i, and by
ti1, ..., timi (tij ≥ 0 ∀j) the corresponding follow-up times. For each subject i we observe:

1. a vector of k baseline (time-fixed) predictors xi = (x1i, ..., xki);

2. mi vectors of p longitudinal (time-varying) predictors yij =
(

y1ij, ..., ypij

)
, j = 1, ..., mi mea-

sured at times ti1, ..., timi . Note that not all longitudinal predictors ought to be measured at every
follow-up time tij, and the number of available measurements is thus allowed to differ across
longitudinal predictors.

2.2 Dynamic prediction of survival

Let Si(t) = P(Ti > t) denote the survival function, i.e., the probability that subject i has not experienced
the event up to time t, and let Si(tB|tA) = P(Ti > tB|Ti > tA), tB ≥ tA denote the conditional
probability that subject i survives up until tB, given that they survived up until tA. Our goal is to
predict the probability of survival of subject i given all the available information up until a given
landmark time tL > 0, namely:

Si(t|tL, xi,Yi(tL)) = P(Ti > t|Ti > tL, xi,Yi(tL)), (1)
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where Yi(tL) = {yi1, ..., yir : tir ≤ tL} denotes all repeated measurements available up to the landmark
time for subject i.

In practice, often one may be interested in computing the predictions of survival in (1) over a
range of q landmark times tL1, tL2, ..., tLq. By doing so, information from more and more repeated
measurements can be incorporated in the prediction model as time passes, and predictions can be
updated based on the latest available information. This approach is referred to as dynamic prediction,
as it involves dynamic updates of model estimates and predictions over time. In this article we
illustrate how to use pencal to compute predictions of the conditional survival probabilities in (1)
for a single landmark time tL. Note that implementing a dynamic prediction approach with pencal
is straightforward, as for each landmark time tLs one simply needs to refit PRC over a dataset that
comprises all repeated measurements available up until t = tLs for the subjects that survived up until
the landmark time tLs (i.e., including subject i if and only if ti ≥ tLs).

2.3 Penalized regression calibration

PRC (Signorelli et al., 2021) is a statistical method that makes it possible to estimate the conditional
survival probabilities in (1) using xi and Yi(tL) as inputs. The estimation of PRC requires a multi-step
procedure that comprises the 3 following steps:

1. model the evolution over time of the longitudinal predictors in Yi(tL) using linear mixed models
(LMM, McCulloch and Searle (2004)) or multivariate latent process mixed models (MLPMM,
Proust-Lima et al. (2013));

2. use the model(s) fitted at step 1 to compute summaries of the trajectories described by the
longitudinal predictors (i.e., the predicted random effects);

3. estimate a penalized Cox model for the survival outcome (ti, δi) using as covariates both the
baseline predictors xi and the predicted random effects computed in step (2).

For simplicity, in this section we describe the version of PRC where in step 1 each longitudinal
covariate is modelled using a separate LMM. This version of the model is referred to as PRC LMM
in Signorelli et al. (2021). Note that alongside with the PRC LMM approach, Signorelli et al. (2021)
also proposed a second approach called PRC MLPMM, where groups of longitudinal covariates are
modelled jointly using the MLPMM. This alternative approach can be of interest when multiple
longitudinal items are employed to measure the same underlying quantity (for example, multiple
antibodies that target the same protein). For the formulation of the PRC MLPMM approach, we refer
readers to Sections 2.1-2.3 of Signorelli et al. (2021) as the notation for steps 1 and 2 using the MLPMM
is significantly more involved.

Denote by I(tL) = {i : ti > tL} the set of subjects that survived up until the landmark time tL. Let
ysi = (ysi1, ..., ysir), where tir ≤ tL denotes the last follow-up time before tL for subject i, be the vector
that comprises all the measurements of the s-th longitudinal variable Ys available up to the landmark
time. In the first step of PRC, we model the evolution over time of each longitudinal covariate Ys
through a linear regression model

ysi = Wsiβs + Zsiusi + εsi, i ∈ I(tL), (2)

where βs is a vector of fixed effect parameters, usi ∼ N(0, Ds) is a vector of random effects,
εsi ∼ N(0, σ2

s Imi ) is the error term vector, and Wsi and Zsi are design matrices associated to βs and usi.
As an example, later in this article we will consider an example where we let ysi depend on the age aij
of subject i at each visit, and include a random intercept and random slope in the LMM:

ysij = βs0 + usi0 + βs1aij + usi1aij + εsij, (3)

where (us0, us1)
T ∼ N(0, Ds) is a vector of random effects that follows a bivariate normal dis-

tribution. We employ maximum likelihood (ML) estimation to estimate βs, Ds and σ2
s in model

(2).

In the second step of PRC, we use the ML estimates from step 1 to derive summaries of the
individual longitudinal trajectories for each biomarker. These are the predicted random effects, which
can be computed as

ûsi = E(usi|Ysi = ysi) = D̂sZT
siV̂

−1
si (ysi − Xsi β̂s), (4)

where V̂si = ZsiD̂sZT
si + σ̂2

s I.

In the third step of PRC, we model the relationship between the survival outcome and the baseline
and longitudinal predictors. This is achieved through the specification of a Cox model where we
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include the baseline predictors xi and the summaries of the longitudinal predictors ûi = (û1i, ..., ûpi)
as covariates:

h(ti|xi, ûi) = h0(ti) exp (γxi + δûi) , (5)

where h0(ti) is the baseline hazard function, and γ and δ are vectors of regression coefficients.
Since our approach allows for the inclusion of a potentially large number of baseline and longitu-
dinal covariates, we estimate model (5) using penalized maximum likelihood (PML, Verweij and
Van Houwelingen (1994)). As penalties we consider the ridge (L2), lasso (L1) and elasticnet penalties.
The elasticnet penalty for model (5) is given by

λ

[
α

(
p

∑
s=1

|γs|+
p

∑
s=1

|δs|
)
+ (1 − α)

(
p

∑
s=1

γ2
s +

p

∑
s=1

δ2
s

)]
, (6)

where λ ≥ 0 and α ∈ [0, 1]. The ridge penalty is obtained by setting α = 0, and the lasso penalty
by fixing α = 1.

2.4 Computation of the predicted survival probabilities

Once models (2) and (5) have been estimated, the predicted survival probabilities Si(t|tL, xi,Yi(tL))
are computed using

Ŝi(t|tL, xi,Yi(tL)) = exp
(
−
∫ t

0
ĥ0(s) exp(γ̂xi + δ̂ûi)

)
, (7)

where ĥ0(s) is the estimated baseline hazard function, γ̂ and δ̂ are the PML estimates of γ and δ
obtained in step 3, and ûi contains the predicted random effects computed in step 2.

For subjects i ∈ I(tL), who are included in the training set and survived up until tL, computation
of (7) is straightforward, since the predicted random effects ûi for such subjects have already been
computed in step 2. Predictions of Si(t|tL, xi,Yi(tL)) for a new subject i = n + 1 who survived up until
tL, but was not part of the training set is a bit more complex: before computing (7), one first needs
to compute the predicted random effects for this new subject using (4). Note that such computation
is feasible if and only if measurements of both baseline and longitudinal covariates (up to tL) are
available for this new subject.

2.5 Evaluation of the predictive performance

We consider the time-dependent area under the ROC curve (tdAUC, Heagerty et al. (2000)), the
concordance index or C index (Pencina and D’Agostino, 2004) and the Brier score (Graf et al., 1999) as
measures of predictive performance. To obtain unbiased estimates of these performance measures,
Signorelli et al. (2021) proposed a cluster bootstrap optimism correction procedure (CBOCP) that
generalizes the use of the bootstrap as internal validation method to problems involving repeated
measurement data. As an alternative to the CBOCP, one may choose to implement a cross-validation
approach instead. Should the user opt for such an alternative, we recommend the use of repeated
cross-validation over simple cross-validation to achieve a level of accuracy comparable to that of the
CBOCP.

3 The R package pencal

In this Section we introduce the functions for the estimation of PRC, the computation of the predicted
survival probabilities and the validation of predictive performance, providing an overview of the
relevant estimation approaches and some important implementation details.

Table 1 provides a side-by-side overview of the functions that can be used to implement the
PRC LMM and PRC MLPMM approaches. Note that while two different functions (one for each
approach) are needed for the three estimation steps and the computation of the survival probabilities,
the evaluation of the predictive performance is implemented in a single function that works with
inputs from both approaches.
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Table 1: Overview of the pencal functions that implement the different modelling steps for the PRC
LMM and PRC MLPMM approaches.

Task PRC LMM PRC MLPMM
Step 1: estimate the mixed-effects models fit_lmms fit_mlpmms
Step 2: compute the predicted random effects summarize_lmms summarize_mlpmms
Step 3: estimate the penalized Cox model fit_prclmm fit_prcmlpmm
Computation of predicted survival probabilities survpred_prclmm survpred_prcmlpmm
Evaluation of predictive performance performance_prc performance_prc

3.1 Model estimation and prediction

The first step of PRC involves the estimation of mixed-effects models for the longitudinal outcomes.
For the PRC LMM approach, this can be done through the fit_lmms function, that proceeds to estimate
p LMMs (one LMM for each of the longitudinal outcomes). Estimation of the LMMs is performed
by maximum likelihood through the lme function from the R package nlme (Pinheiro and Bates,
2000). For the PRC MLPMM approach, the first step involves estimating one MLPMM for each group
of longitudinal covariates. Estimation of the MLPMMs is done by maximum likelihood using the
modified Marquardt algorithm described in Proust-Lima et al. (2013), as implemented in the multlcmm
from the R package lcmm (Proust-Lima et al., 2017).

The second step of PRC requires the computation of the predicted random effects. The function
summarize_lmms implements this for the PRC LMM approach. The function takes the output of
fit_lmms as input, and proceeds to the computation of the predicted random effects using equation
(4). Similarly, the function summarize_mlpmms does the same for the PRC MLPMM approach by taking
the output of fit_mlpmms as input and computing the predicted random effects using the formula
given in equation (4) of Signorelli et al. (2021).

The third step of PRC requires the estimation of a Cox model where the baseline covariates and the
predicted random effects are used as covariates.Estimation of such model can be performed using the
function fit_prclmm for the PRC LMM approach and fit_prcmlpmm for the PRC MLPMM approach.
These functions proceed to the estimation of the aforementioned Cox model by penalized maximum
likelihood through the function cv.glmnet from the R package glmnet (Simon et al., 2011). If the
user chooses the ridge or lasso penalty, then the selection of the value of the tuning parameter λ is
performed through cross-validation as implemented in glmnet. If, instead, the elasticnet penalty is
used, fit_prclmm and fit_prcmlpmm proceed to perform a nested cross-validation procedure to jointly
select the optimal values of the tuning parameters α and λ.

Lastly, the function survpred_prclmm can be used to compute the predicted survival probabilities
as described in equation (7) for the PRC LMM approach. The corresponding function for the PRC
MLPMM approach is survpred_prcmlpmm.

3.2 Computation of the CBOCP

In pencal, the evaluation of the predictive performance of the fitted model is done by estimating the
tdAUC, C index and Brier score through the CBOCP described in Signorelli et al. (2021). For both the
PRC LMM and PRC MLPMM approaches, this can be done through the function performance_prc.
The estimates of the tDAUC, C index and Brier score are computed using functions from the packages
survivalROC (Heagerty and Saha-Chaudhuri, 2022), survcomp (Schröder et al., 2011) and riskRegres-
sion (Gerds et al., 2023), respectively.

The computation of the CBOCP requires the choice of the number of bootstrap replicates B over
which the model should be refitted. This can be done by specifying the argument n.boots inside the
functions that implement the first step of PRC, namely fit_lmms for the PRC LMM approach and
fit_mlpmms for the PRC MLPMM one. The supplied value of n.boots is stored in the output of such
functions, and all subsequent functions inherit this value, automatically performing the computations
necessary for the CBOCP.

If n.boots = 0 (default), the CBOCP is not computed, and performance_prc only returns the
naïve estimates of predictive performance. Values of n.boots ≥ 1 will trigger the computation of the
CBOCP, and the output of performance_prc will additionally include the estimates of the optimism
and the optimism-corrected performance measures. A typical value for B is 100, but in general we
recommend setting B to a value between 50 and 200 (depending on computing time and the desired
level of accuracy, one may also consider larger values of B).
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3.3 User-friendly parallelization

The computation of the CBOCP is by nature repetitive, as it requires to repeat steps 1, 2 and 3 over
B bootstrap samples, and to compute predictions and performance measures both on the bootstrap
sample and on the original dataset to estimate the optimism. Due to this repetitiveness, such compu-
tations can be easily parallelized to reduce computing time. Moreover, also the estimation of the p
LMMs / MLPMMs in step 1 can be trivially parallelized.

With the goal of making it as easy as possible for users to parallelize such computations, the
functions in Table 1 automatically parallelize the aforementioned computations using the %dopar%
operator from the R package foreach (Microsoft and Weston, 2022). The user only needs to specify
the number of cores they want to use for the computation using the argument n.cores; pencal will
automatically take care of the parallelization.

3.4 Classes, methods and further functionalities

Besides the core functions introduced in Table 1, pencal comprises additional functions that are shortly
described hereafter.

Three functions are used to simulate the data that are used in the package documentation to
illustrate typical usage of pencal’s functions. The function simulate_t_weibull is used to generate
survival times from a Weibull distribution using the inverse transformation method. The functions
simulate_prclmm_data and simulate_prcmlpmm_data are used to generate data for the estimation of
PRC LMM and PRC MLPMM, respectively.

S3 classes and methods are implemented for the outputs of each modelling step:

• step 1: fit_lmms and fit_mlpmms return objects of class lmmfit and mplmmfit, respectively. As
the number of longitudinal covariates increases, step 1 of PRC will involve the estimation of
many mixed-effects models: to simplify the extraction of the estimates of each mixed model, we
provide two summary functions, summary.lmmfit and summary.mlpmmfit;

• step 2: summarize_lmms and summarize_mlpmms return objects of class ranefs, for which a
summary.ranefs function is available;

• step 3: fit_prclmm outputs an object of class prclmm, and fit_prcmlpmm one of class prcmlpmm.
For both classes, summary methods (summary.prclmm and summary.mlpmmfit, respectively) are
implemented.

Lastly, it may be sometimes of interest to compare the performance of PRC to that of either a penal-
ized Cox model that only uses baseline values of all covariates, or a penalized Cox model with LOFC
landmarking. The pencox_baseline function provides an interface to estimate these two models and
to compute the associated CBOCP. Its output can be fed to the function performance_pencox_baseline
to obtain the naïve and optimism-corrected estimates of the tdAUC, C index and Brier score for these
two models.

4 Dynamic prediction with pencal: a step by step example

4.1 Loading pbc2data

To illustrate how to use pencal in practice, we employ data from a study from a clinical trial on primary
biliary cholangitis (PBC) conducted by the Mayo Clinic from 1974 to 1984 (Murtaugh et al., 1994).
The trial recorded the first of two survival outcomes, namely liver transplantation or death. In this
example we focus our attention on the prediction of deaths, treating patients who underwent liver
transplantation as right-censored. The data are available in pencal in a list called pbc2data that can be
loaded as follows:

library(pencal)
data(pbc2data)
ls(pbc2data)

#> [1] "baselineInfo" "longitudinalInfo"

pbc2data contains two data frames: baselineInfo records the survival information (ti, δi) and
baseline covariates xi, whereas longitudinalInfo contains repeated measurements of the longitudinal
predictors yi. For simplicity, we rename the two data frames as sdata and ldata:

sdata = pbc2data$baselineInfo
ldata = pbc2data$longitudinalInfo
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4.2 Input data format

As detailed in the Statistical Methods section, estimation of PRC requires the following input data for
each subject i = 1, ..., n:

• a pair (ti, δi) providing the survival outcome for subject i = 1;
• a vector of k baseline covariates xi;
• an mi × p matrix containing all repeated measurements of the p longitudinal predictors. Within

this matrix each column corresponds to a predictor, and each row to the measurements yij
collected at time tij, j ∈ {1, ..., mi} for subject i;

• any longitudinal covariate needed to construct the design matrices Wsi and Zsi that will be used
to estimate the LMMs of equation (2).

Such data should be provided to pencal using two data frames. The first data frame is a data frame
that contains information on the survival outcomes (ti, δi) and the baseline covariates xi. For the PBC2
example, this is the sdata data frame created above:

head(sdata)

#> id time event baselineAge sex treatment
#> 1 1 1.095170 1 58.76684 female D-penicil
#> 3 2 14.152338 0 56.44782 female D-penicil
#> 12 3 2.770781 1 70.07447 male D-penicil
#> 16 4 5.270507 1 54.74209 female D-penicil
#> 23 5 4.120578 0 38.10645 female placebo
#> 29 6 6.853028 1 66.26054 female placebo

This data frame should comprise at least 3 variables: a variable named id that contains subject
identifiers, a variable named time containing the values of ti, and a dummy variable named event
that corresponds to δi (event = 1 for subjects who experience the event at ti, and event = 0 for
right-censored observations). Additionally, it can also contain the baseline covariates xi (if any); in the
example we have k = 3 baseline covariates: baselineAge, sex and treatment.

The second data frame is a dataset in long format that contains the repeated measurements of the
longitudinal predictors yij and of any covariate needed to create the design matrices Wsi and Zsi. In
our example application, such information is stored in ldata:

head(ldata)

#> id age fuptime serBilir serChol albumin alkaline SGOT platelets
#> 1 1 58.76684 0.0000000 14.5 261 2.60 1718 138.0 190
#> 2 1 59.29252 0.5256817 21.3 NA 2.94 1612 6.2 183
#> 3 2 56.44782 0.0000000 1.1 302 4.14 7395 113.5 221
#> 4 2 56.94612 0.4983025 0.8 NA 3.60 2107 139.5 188
#> 5 2 57.44716 0.9993429 1.0 NA 3.55 1711 144.2 161
#> 6 2 58.55054 2.1027270 1.9 NA 3.92 1365 144.2 122
#> prothrombin
#> 1 12.2
#> 2 11.2
#> 3 10.6
#> 4 11.0
#> 5 11.6
#> 6 10.6

This “longitudinal” data frame should contain the following information:

• a variable named id that contains subject identifiers;

• a variable containing the time from baseline tij at which the measurement was collected. In
ldata, we called this variable fuptime (short for: follow-up time). Notice that if the longitudinal
covariates are measured at tij = 0, a row with fuptime = 0 must be included in ldata;

• the p longitudinal predictors (serBilir, serChol, albumin, alkaline, SGOT, platelets and
prothrombin in the example);

• the covariates needed to construct Wsi and Zsi (age in the example).
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4.3 Choice of the landmark time and data preparation

Before proceeding with the estimation of PRC and the computation of the predicted survival prob-
abilities Si(t|tL, xi,Yi(tL)), three preliminary steps are needed. The first involves the choice of the
landmark time tL. Hereafter we choose tL = 2 years, meaning that we want to predict the survival
probability S(t|tL = 2, xi,Yi(2)) for a subject with baseline covariates xi and longitudinal covariates
measured up until two years from baseline Yi(2).

# set the landmark time
lmark = 2

Once tL has been chosen, the second step is to retain for analysis only those subjects that survived
up until the landmark time, i.e. all i : ti ≥ tL:

# remove subjects who had event / were censored before landmark
sdata = subset(sdata, time > lmark)
ldata = subset(ldata, id %in% sdata$id)

Lastly, only repeated measurements taken up to the landmark time (tij ≤ tL) should be retained
for modelling, whereas measurements taken after the landmark time (tij > tL) should be discarded:

# remove measurements taken after landmark:
ldata = subset(ldata, fuptime <= lmark)

4.4 Descriptive statistics, data visualization and transformation

After choosing tL = 2 as landmark time, the number of subjects retained for model estimation is 278,
of which 107 experience the event of interest, whereas the remaining 171 are right-censored:

# number of subjects retained in the analysis:
nrow(sdata)

#> [1] 278

# number of events (1s) and censored observations (0s):
table(sdata$event)

#>
#> 0 1
#> 171 107

The estimated survival probability can be visualized through the Kaplan-Meier estimator in Figure
1 as shown below:

library(survival)
library(survminer)
surv.obj = Surv(time = sdata$time, event = sdata$event)
KM = survfit(surv.obj ~ 1, type = "kaplan-meier")
ggsurvplot(KM, data = sdata, risk.table = TRUE, cumevents = TRUE, legend = 'none')

Spaghetti plots displaying the trajectory described by a longitudinal covariate, as well as density
plots to visualize its marginal distribution, can be created in ggplot2 style using:

library(ggplot2)
library(gridExtra)
traj1 = ggplot(ldata, aes(x = age, y = serBilir, group = id)) +
geom_line(color = 'darkgreen') + theme_classic() + ggtitle('Trajectories of serBilir')

dens1 = ggplot(ldata, aes(x = serBilir)) +
geom_density(adjust=1.5, alpha=.4, fill = 'orange') + theme_classic() +
ggtitle('Density of serBilir')

grid.arrange(traj1, dens1, ncol = 2)

The two charts thus created are shown in Figure 2.

We can observe that some longitudinal covariates exhibit strong skewness, as in the case of
serBilir. Although in principle the LMM can be used to model variables with skewed distributions,
this may sometimes lead to converge problems or poor model fit. It can thus be advisable to transform
such covariates to prevent these problems (but note that this is not a required modelling choice, and
one may alternatively choose to avoid such transformation). For this reason, we log-transform those
longitudinal covariates with skewed distribution before modelling them with LMMs:
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Figure 1: Chart displaying the Kaplan-Meier estimates of the conditional survival probability S(t|2).
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Figure 2: Spaghetti and density charts for the variable serBilir.
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ldata$logSerBilir = log(ldata$serBilir)
ldata$logSerChol = log(ldata$serChol)
ldata$logAlkaline = log(ldata$alkaline)
ldata$logSGOT = log(ldata$SGOT)
ldata$logProthrombin = log(ldata$prothrombin)

4.5 Model estimation

Step 1: estimation of the mixed-effects models

The first step in the estimation of PRC involves modelling the evolution over time of the longitudinal
predictors through mixed-effects models. Hereafter we model each of the longitudinal predictors
using the LMM given in equation (3), which comprises a random intercept and a random slope for
age. Estimation of this model for each longitudinal predictor can be done using the function fit_lmms:

lmms = fit_lmms(y.names = c('logSerBilir', 'logSerChol', 'albumin', 'logAlkaline',
'logSGOT', 'platelets', 'logProthrombin'),

fixefs = ~ age, ranefs = ~ age | id, t.from.base = fuptime,
long.data = ldata, surv.data = sdata, n.boots = 0, n.cores = 8,
verbose = FALSE)

The argument y.names is a character vector used to specify the names of the longitudinal predictors
in ldata. fixefs and ranefs are formulas used to specify the fixed and random effects part of the
LMM using the nlme formula notation (Pinheiro et al., 2022; Gałecki and Burzykowski, 2013). In the
example, fixefs = ~ age determines the inclusion of the fixed effects part βs0 + βs1aij of model (3),
and ranefs = ~ age | id the inclusion of the random effects part usi0 + usi1aij (allowing the random
intercept and random slopes to be correlated).

The arguments long.data and surv.data are used to provide the names of the data frames
containing the longitudinal variables (long.data) and the survival data and baseline covariates
(surv.data) in the data formats described previously. The argument t.from.base is used to specify
the name of the variable in long.data that contains the values of time from baseline; this argument is
used internally to check that the data have been landmarked properly.

The n.boots argument is used to specify the number of bootstrap samples to use for the CBOCP.
For the time being we focus on model estimation and on the prediction of the conditional probabilities,
setting n.boots = 0; later we will show how to compute the CBOCP by setting n.boots = 50. Lastly,
n.cores allows to specify the number of cores to use to parallelize computations (the default is n.cores
= 1, i.e. no parallelization), and verbose is a logical value that indicates whether information messages
should be printed in the console (TRUE, default) or not (FALSE). Additional arguments are described in
the help page, see ?fit_lmms.

The parameter estimates from the mixed models can be obtained from the output of step 1 using
summary. For example, to obtain the parameters of the LMM for albumin we can use:

summary(lmms, yname = 'albumin', what = 'betas')

#> (Intercept) age
#> 3.822741450 -0.005710811

summary(lmms, yname = 'albumin', what = 'variances')

#> id = pdLogChol(age)
#> Variance StdDev Corr
#> (Intercept) 8.864945e-02 0.2977405761 (Intr)
#> age 3.447614e-07 0.0005871639 -0.103
#> Residual 1.257161e-01 0.3545646671

From the output we can deduce that the ML estimates for the LMM involving albumin are
β̂ = (3.823,−0.0057), σ̂u0 = 0.2977, σ̂u1 = 0.00059, and σ̂u0,u1 = −0.103 · 0.2977 · 0.00059. The usual
table with parameter estimates, standard errors and p-values can be obtained with

summary(lmms, yname = 'albumin', what = 'tTable')

#> Value Std.Error DF t-value p-value
#> (Intercept) 3.822741450 0.106163343 566 36.008111 1.614057e-148
#> age -0.005710811 0.002085903 566 -2.737812 6.379534e-03
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Step 2: computation of the predicted random effects

After the ML estimates from the LMM have been computed, the second step of PRC involves the
computation of the predicted random effects ûsi. Such computation can be performed using the
function summarize_lmms:

pred_ranefs = summarize_lmms(object = lmms, n.cores = 8, verbose = FALSE)
summary(pred_ranefs)

#> Number of predicted random effect variables: 14
#> Sample size: 278

Here, the object argument is used to pass the output of fit_lmms to summarize_lmms; n.cores
and verbose are the same as in fit_lmms. The output of summarize_lmms is a list that contains, among
other elements, a matrix with the predicted random effects called ranef.orig, where the row names
display the subject identifiers:

round(pred_ranefs$ranef.orig[1:4, 1:4], 4)

#> logSerBilir_b_int logSerBilir_b_age logSerChol_b_int logSerChol_b_age
#> 2 -0.3830 -0.0017 -0.0712 0.0007
#> 3 -0.1171 -0.0006 -0.5985 0.0049
#> 4 0.1686 0.0009 -0.3704 0.0035
#> 5 0.3800 0.0012 -0.2910 0.0029

From the output we can deduce, for example, that the predicted random intercept and random
slope for logSerBilir and subject 4 are û1,0,4 = 0.1686 and û1,1,4 = 0.0009.

Step 3: estimation of the penalized Cox model

The last step in the estimation of PRC involves the estimation of model (5) through PML. This can be
achieved with the fit_prclmm function:

pencox = fit_prclmm(object = pred_ranefs, surv.data = sdata,
baseline.covs = ~ baselineAge + sex + treatment, penalty = 'ridge',
standardize = TRUE, n.cores = 8, verbose = FALSE)

The object argument is used to pass the output of summarize_lmms to fit_prclmm; surv.data is the
data frame that contains the information about survival data and baseline covariates; baseline.covs is
a formula used to define which baseline covariates xi should be included in model (5) (with associated
regression coefficient γ). The penalty argument is a character that can take one of the following values:

1. penalty = 'ridge' to estimate model (5) using the ridge or L2 penalty within the PML estima-
tion;

2. penalty = 'lasso' to estimate model (5) using the lasso or L1 penalty;
3. penalty = 'elnet' to estimate model (5) using the elasticnet penalty (Zou and Hastie, 2005). If

this penalty is chosen, additional arguments such as n.alpha.elnet and n.folds.elnet can be
specified to determine how to select the additional tuning parameter (α) used by this penalty
through nested cross-validation.

The standardize argument is used to determine whether the predicted random effects should
be standardized prior to inclusion in the Cox model (default is TRUE). By default, fit_prclmm does
not penalize baseline covariates, but this default behaviour can be changed using the argument
pfac.base.covs argument (not shown here).

The n.cores and verbose arguments are the same as in fit_lmms. See ?fit_prclmm for a descrip-
tion of further arguments.

The output of fit_prclmm can be summarized through summary:

summary(pencox)

#> Fitted model: PRC-LMM
#> Penalty function used: ridge
#> Tuning parameters:
#> lambda alpha
#> 1 0.2126761 0
#> Sample size: 278
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#> Number of events: 107
#> Bootstrap optimism correction: not computed
#> Penalized likelihood estimates (rounded to 4 digits):
#> baselineAge sexfemale treatmentD-penicil logSerBilir_b_int logSerBilir_b_age
#> 1 0.0476 -0.2872 -0.0157 0.4341 111.3935
#> logSerChol_b_int logSerChol_b_age albumin_b_int albumin_b_age
#> 1 0.0986 -10.5311 -1.1361 23070.92
#> logAlkaline_b_int logAlkaline_b_age logSGOT_b_int logSGOT_b_age
#> 1 0.0874 -12.5617 0.238 272.246
#> platelets_b_int platelets_b_age logProthrombin_b_int logProthrombin_b_age
#> 1 -0.0011 -0.2046 2.8114 -573.3093

The PML estimates of γ and δ can be obtained through

step3summary = summary(pencox)
ls(step3summary)

#> [1] "coefficients" "data_info" "model_info" "tuning"

step3summary$coefficients

#> baselineAge sexfemale treatmentD-penicil logSerBilir_b_int logSerBilir_b_age
#> 1 0.0475985 -0.287243 -0.01567369 0.4340672 111.3935
#> logSerChol_b_int logSerChol_b_age albumin_b_int albumin_b_age
#> 1 0.0986092 -10.53106 -1.13607 23070.92
#> logAlkaline_b_int logAlkaline_b_age logSGOT_b_int logSGOT_b_age
#> 1 0.08741668 -12.56169 0.2379553 272.246
#> platelets_b_int platelets_b_age logProthrombin_b_int logProthrombin_b_age
#> 1 -0.001122804 -0.2046088 2.811446 -573.3093

4.6 Computing predictions

The function survpred_prclmm can be used to compute the conditional survival probabilities Ŝi(t|tL, xi,Yi(tL)),
t ≥ tL in (7). For the subjects that have been used to estimate PRC, such computation can be performed
using survpred_prclmm as follows:

preds = survpred_prclmm(step1 = lmms, step2 = pred_ranefs, step3 = pencox, times = 3:7)

The step1, step2 and step3 arguments are used to pass the outputs of the 3 estimation steps
to the function; the times argument is a vector with the prediction times at which one wishes to
evaluate the conditional survival probabilities. The predicted survival probabilities are stored in the
predicted_survival element of the function output:

ls(preds)

#> [1] "call" "predicted_survival"

head(preds$predicted_survival)

#> id S(3) S(4) S(5) S(6) S(7)
#> 2 2 0.9398512 0.8867592 0.8329966 0.7813647 0.7008304
#> 3 3 0.8555809 0.7392053 0.6316391 0.5377700 0.4090876
#> 4 4 0.8138498 0.6709525 0.5451302 0.4407852 0.3071611
#> 5 5 0.9460431 0.8981124 0.8492655 0.8020394 0.7277052
#> 6 6 0.9383339 0.8839878 0.8290416 0.7763599 0.6943714
#> 7 7 0.9718724 0.9462254 0.9193945 0.8927316 0.8491681

The function survplot_prc allows to visualize predictions for a sample of individuals:

survplot_prc(step1 = lmms, step2 = pred_ranefs, step3 = pencox,
ids = c(54, 111, 173, 271), tmax = 12)

The ids argument is used to indicate the subjects for whom the curve should be displayed, and
tmax sets the upper limit for the x axis. The chart, displayed in Figure 3, shows the predicted survival
probability Ŝi(t|2) for subjects 54, 111, 173, and 271. Notice that the survival probability up to the 2
year landmark is 1 because our modelling approach conditions on being still at risk at the landmark
time.
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Figure 3: Predicted survival probabilities Ŝi(t|2), t ∈ [2, 12] for subjects i ∈ {54, 111, 173, 271}.

Prediction for new subjects that have not been used for model estimation is a bit more involved, as
it additionally requires to compute the predicted random effects for the new subjects using equation (4)
based on the parameter estimates obtained in the first step of PRC. For illustration purposes, suppose
that we have data from 3 subjects stored in two data frames called new_ldata and new_sdata:

new_ldata = subset(ldata, id %in% c(5, 54, 110))
new_sdata = subset(sdata, id %in% c(5, 54, 110), c('id', 'baselineAge', 'sex', 'treatment'))
head(new_ldata)

#> id age fuptime serBilir serChol albumin alkaline SGOT platelets
#> 23 5 38.10645 0.0000000 3.4 279 3.53 671 113.2 136
#> 24 5 38.65130 0.5448472 1.9 NA 3.28 689 103.9 114
#> 25 5 39.17698 1.0705290 2.5 NA 3.34 652 117.8 99
#> 419 54 39.19888 0.0000000 1.3 288 3.40 5487 73.5 254
#> 420 54 39.69171 0.4928266 1.5 NA 3.22 1580 71.3 112
#> 421 54 40.19001 0.9911291 2.6 NA 3.48 2127 86.8 207
#> prothrombin logSerBilir logSerChol logAlkaline logSGOT logProthrombin
#> 23 10.9 1.2237754 5.631212 6.508769 4.729156 2.388763
#> 24 10.7 0.6418539 NA 6.535241 4.643429 2.370244
#> 25 10.5 0.9162907 NA 6.480045 4.768988 2.351375
#> 419 11.0 0.2623643 5.662960 8.610137 4.297285 2.397895
#> 420 18.0 0.4054651 NA 7.365180 4.266896 2.890372
#> 421 10.9 0.9555114 NA 7.662468 4.463607 2.388763

head(new_sdata)

#> id baselineAge sex treatment
#> 23 5 38.10645 female placebo
#> 419 54 39.19888 female D-penicil
#> 859 110 38.91140 female D-penicil

Note that the variables and their variable type in new_ldata and new_sdata should be the same
as in the ldata and sdata; the only exception to this is that new_sdata does not need to contain
information about survival, so unlike sdata it does not comprise the time and event variables.

To compute predicted probabilities for new subjects, it is once again possible to resort to survpred_prclmm;
now, it is necessary to specify the arguments new.longdata and new.basecovs to supply the data about
the new subjects to survpred_prclmm:

pred_new = survpred_prclmm(step1 = lmms, step2 = pred_ranefs, step3 = pencox, times = 3:7,
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new.longdata = new_ldata, new.basecovs = new_sdata)
pred_new$predicted_survival

#> id S(3) S(4) S(5) S(6) S(7)
#> 5 5 0.9460431 0.8981124 0.8492655 0.8020394 0.7277052
#> 54 54 0.9115188 0.8357020 0.7611779 0.6918065 0.5880763
#> 110 110 0.9505706 0.9064581 0.8612933 0.8174139 0.7478898

4.7 Evaluation of the predictive performance

As explained in the Statistical Methods Section, estimation of the predictive performance in pencal
is done through a CBOCP that allows to obtain unbiased estimates of predictive performance as
measured by the tdAUC, C index and Brier score.

Before computing the (potentially time-consuming) CBOCP, one may want to first have a look
at the naïve (biased) estimates of predictive performance. This can be done using the function
performance_prc:

# naive performance (biased, optimistic estimate)
naive_perf = performance_prc(step2 = pred_ranefs, step3 = pencox, metric = 'tdauc',

times = 3:7, n.cores = 8, verbose = FALSE)

#> Warning in performance_prc(step2 = pred_ranefs, step3 = pencox, metric =
#> "tdauc", : The cluster bootstrap optimism correction has not been performed
#> (n.boots = 0). Therefore, only the apparent values of the performance values
#> will be returned.

Here pred_ranefs is the output of step2 of PRC and pencox the output of step 3. The metric
argument can be used to specify the performance measures to be computed (possible values are tdauc,
c and brier), whereas the times argument is used to specify the time points at which the tdAUC and
Brier score should be evaluated (t = 3, 4, 5, 6, 7 in this example). Notice that when fit_lmms has been
run with n.boots = 0, performance_prc returns a warning to inform users that the CBOCP has not
been performed; for now, we can ignore this warning (which we will address soon by refitting PRC
with n.boots = 50).

naive_perf

#> $call
#> performance_prc(step2 = pred_ranefs, step3 = pencox, metric = "tdauc",
#> times = 3:7, n.cores = 8, verbose = FALSE)
#>
#> $tdAUC
#> pred.time tdAUC.naive optimism.correction tdAUC.adjusted
#> 1 3 0.9439 NA NA
#> 2 4 0.9351 NA NA
#> 3 5 0.9266 NA NA
#> 4 6 0.8981 NA NA
#> 5 7 0.8831 NA NA

From the output we can observe that the naïve estimate of the tdAUC ranges from 0.9439 for
predictions of survival at t = 3 up to 0.8831 for predictions at t = 7. These naïve (in-sample)
measurements of predictive performance may be optimistically biased due to overfitting, i.e., the fact
that they are evaluated using the same data on which PRC was estimated. To correct for this potential
source of bias, below we show how to implement the CBOCP to obtain unbiased estimates of the
tdAUC and C index.

Computation of the CBOCP requires to repeat the 3 estimation steps of PRC for each bootstrap
samples; this can be done by rerunning the functions fit_lmms, summarize_lmms and fit_prclmm with
the same arguments used previously, but setting n.boots within fit_lmms to an integer value larger
than 0. n.boots specifies the number of bootstrap samples to use to compute the CBOCP. In the
example below we set n.boots = 50 (note that larger values of n.boots can increase the accuracy of
the CBOCP estimates, but at the same time they increase computing time).

step1 = fit_lmms(y.names = c('logSerBilir', 'logSerChol', 'albumin', 'logAlkaline',
'logSGOT', 'platelets', 'logProthrombin'),

fixefs = ~ age, ranefs = ~ age | id, t.from.base = fuptime,
long.data = ldata, surv.data = sdata, n.boots = 50, n.cores = 8,
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verbose = FALSE)
step2 = summarize_lmms(object = step1, n.cores = 8, verbose = FALSE)
step3 = fit_prclmm(object = step2, surv.data = sdata,

baseline.covs = ~ baselineAge + sex + treatment,
penalty = 'ridge', n.cores = 8, verbose = FALSE)

Once all computations are finished, it suffices to supply the refitted outputs of step 2 and step 3 to
performance_prc:

# bootstrap-corrected performance (unbiased estimate)
cbocp = performance_prc(step2 = step2, step3 = step3, metric = c('tdauc', 'brier'),

times = 3:7, n.cores = 8, verbose = FALSE)
cbocp

#> $call
#> performance_prc(step2 = step2, step3 = step3, metric = c("tdauc",
#> "brier"), times = 3:7, n.cores = 8, verbose = FALSE)
#>
#> $tdAUC
#> pred.time tdAUC.naive optimism.correction tdAUC.adjusted
#> 1 3 0.9439 -0.0061 0.9378
#> 2 4 0.9351 -0.0150 0.9201
#> 3 5 0.9266 -0.0132 0.9134
#> 4 6 0.8981 -0.0086 0.8895
#> 5 7 0.8831 -0.0118 0.8713
#>
#> $Brier
#> pred.time Brier.naive optimism.correction Brier.adjusted
#> 1 3 0.0571 0.0147 0.0718
#> 2 4 0.0699 0.0271 0.0970
#> 3 5 0.0844 0.0328 0.1172
#> 4 6 0.0953 0.0348 0.1301
#> 5 7 0.1007 0.0416 0.1423

In the outputs above, the columns tdAUC.naive and Brier.naive contain the naïve estimates
of the tdAUC and Brier score; optimism.correction reports the values of the estimated optimism
correction from the CBOCP for the two metrics; finally, tdAUC.adjusted and Brier.adjusted contain
the unbiased estimates of the tdAUC and Brier score.

As expected, the unbiased estimates of predictive performance are somewhat worse than the naïve
ones. For example, the tdAUC estimate for predictions at t = 3 is 0.9378 instead of the naïve estimate
0.9439. Similarly, the Brier score estimate for predictions at t = 3 is 0.0718 instead of the naïve estimate
0.0571.

5 Evaluation of computing time

We now turn our attention to the relationship between the sample size n, number of longitudinal
covariates p and number of bootstrap replicates B on computing time. Furthermore, we look into how
parallel computing may be used to reduce computing time for the CBOCP. To gain insight into these
relationships, we simulate data from the PRC LMM model using the function simulate_prclmm_data
according to four simulation scenarios:

• in simulation 1 we study the effect of n on the estimation of PRC. To this aim, we let n ∈
{100, 200, 400, 600, 800, 1000} and fix p = 10;

• in simulation 2 we study the effect of p on the estimation of PRC by taking p ∈ {5, 10, 20, 30, 40, 50}
and fixing n = 200;

• in simulation 3 we shift our attention to the effect of B on the computing time of the CBOCP. We
let B ∈ {50, 100, 200, 300, 400, 500}, fixing n = 200 and p = 10;

• finally, in simulation 4 we compute PRC and the CBOCP on a dataset where n = 200, p = 50
and B = 50 using an increasing number of cores, namely {1, 2, 3, 4, 8, 16}.

Computations were performed on an AMD EPYC 7662 processor with 2 GHz CPU, using a single
core for simulations 1, 2 and 3, and a number of cores ranging from 1 to 16 in simulation 4. Computing
time was measured using the rbenchmark package (Kusnierczyk, 2012).
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Figure 4: Left and center: average computing time (in seconds) of the estimation of the PRC LMM
model as a function of the sample size n (simulation 1, left) and of the number of longitudinal
predictors p (simulation 2, center). Right: average computing time (in minutes) for the computation of
the CBOCP as a function of B (simulation 3).

The charts in Figure 4 display the average computing time over 10 replications of simulations 1, 2
and 3. In simulation 1, the average computing time increases from 5.80 seconds when n = 100 to 14.01
seconds when n = 1000, so we observe a 2.4-fold increase in computing time as n increases by a factor
of 10. In simulation 2, the average computing time increases from 5.37 seconds when p = 5 to 19.26
seconds when p = 50, yielding a 3.6-fold increase in computing time as p increases by a factor of 10.
Lastly, in simulation 3 the average computing time increases from 3.38 minutes when B = 50 to 32.32
minutes when B = 500, with a 9.6-fold time increase corresponding to a 10-fold increase in B.

Overall, the results of simulations 1 and 2 indicate that computing time for the estimation of PRC
increases linearly with, but less than proportionally to, n and p (meaning that a k-fold increase in n or
p will typically increase computing time by a factor smaller than k). Instead, from simulation 3 we can
observe that the computing time of the CBOCP increases proportionally to B.

The results of simulations 1, 2 and 3 show that whereas the estimation of the PRC model itself
typically requires only a few seconds, the computation of the CBOCP is more intensive and can
require several minutes. This is due to the fact that the CBOCP requires the PRC modelling steps to
be repeated on each bootstrap sample, effectively requiring to compute PRC B + 1 times (once on
the original dataset + B times on the B bootstrap datasets). To reduce the computing time needed to
compute the CBOCP, pencal enables users to easily parallelize computations through the argument
n.cores within fit_lmms, summarize_lmms and fit_prclmm. In simulation 4, we show the effect that
increasing the number of cores has on the computing time of the CBOCP.

Figure 5 shows the average computing time of the CBOCP over 10 replications of simulation 4.
When looking at the total computing time, we can see that increasing the number of cores from 1 to 8
progressively decreases computing time, reducing it from 863.8 seconds without parallelization up to
235.7 seconds when using 8 cores (-68%). The most significant time gains are from 1 to 2 cores (-407.2
seconds) and then from 2 to 3 (-124.4 seconds). Interestingly, further doubling the number of cores
from 8 to 16 proves to be detrimental, increasing computing time from 235.7 to 684.5 seconds.

To understand this initially decreasing, but later increasing pattern, it is useful to consider the
computing time of each of the modelling steps separately. By looking at Figure 5 we notice that step 1,
which involves the estimation of p · (B + 1) LMMs, is the most time-consuming step; its computing
time consistently decreases as the number of cores decreases (from 636.1 to 60.8 seconds).

The same does not apply to step 2, where computing time decreases from 1 to 4 cores (from 192.3
to 93.6 seconds), but then increases considerably when going from 8 (130.4 seconds) to 16 cores (613.2
seconds). This pattern is primarily due to the fact that step 2 mostly involves simple linear algebra:
parallelizing this step on a large number of cores may be detrimental, as the (limited) time gain that
can be achieved by doing these simple computations in parallel may be more than compensated by
the time cost of dispatching the necessary matrices and vectors to many cores and recombining the
results at the end of the parallelization.

As concerns step 3, we can see that it is the lightest step in terms of computing time. The pattern
is consistently decreasing from 1 (35.4 seconds) to 8 cores (8.8 seconds), with a slight increase when
using 16 cores (10.6 seconds).

In conclusion, the results of simulation 4 show how it may be advisable to parallelize computations
to compute the CBOCP, but without using an excessive number of cores (specially for step 2). Our
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Figure 5: Average computing time (in seconds) for the estimation of the PRC LMM model and the
computation of the CBOCP as a function of the number of cores.

general advice is to use between 3 and 8 cores for optimal performance, nevertheless we emphasize
how the effect of the number of cores on computing time may differ from the patterns in Figure 5
depending on a combination of factors such as n, p, number of repeated measurements per subject,
and B. Furthermore, we notice that within pencal, a different number of cores can be chosen for each
modelling step; in the example of simulation 4, the optimal performance would be achieved using 16
cores for step 1, 4 cores for step 2, and 8 cores for step 3 (but using 8 cores for all 3 steps isn’t much less
efficient).

6 Summary and discussion

The R package pencal provides a user-friendly implementation of Penalized Regression Calibration
(PRC, Signorelli et al. (2021)), a statistical method that can be used to implement dynamic prediction
of time-to-event outcomes in longitudinal studies where both time-independent and longitudinal (i.e.,
time-dependent) covariates are available as possible predictors of survival. The package comprises
functions for the estimation of PRC and the prediction of survival, as well as functions to compute un-
biased estimates of predictive performance through a cluster bootstrap procedure. Because computing
such bootstrap procedure may be time-consuming, the package automatically parallelizes repetitive
computations using the %dopar% operator from the foreach package (Microsoft and Weston, 2022).

pencal focuses on problems where a single survival outcome is measured with right-censoring.
As such, it is not designed to handle interval censoring or competing risks. The modelling of the
longitudinal covariates is performed using either the LMM or the MLPMM, which are linear models
that are mostly suitable for the analysis of continuous outcomes. Implementing generalized linear
mixed models (GLMMs) would make it possible to properly deal with binary and discrete longitudinal
covariates, however the estimation of GLMMs and the computation of the predicted random effects are
more time-consuming and more prone to convergence problems, two aspects that would particularly
complicate the computation of the CBOCP. For this reason we did not pursue GLMMs further, but leave
them as a topic of future research. Users dealing with discrete longitudinal covariates may consider
log-transforming them before modelling with a LMM within pencal (specially if such covariates are
right-skewed and/or exhibit overdispersion). Despite this latter limitation, a recent benchmarking
study showed that PRC outperformed several alternative modelling approaches when applied to
multiple real-world datasets (Signorelli and Retif, 2024).

Two modelling choices deserve particular attention when implementing PRC in specific application
contexts. The first refers to the choice of the covariates to include in the fixed and random effects parts
of the LMM of Equation (2). In principle, one may want to model the response variable as flexibly as
possible, including several fixed effect covariates and multiple random effects in the LMM. However,
when doing this one should consider that the purpose of the LMM is to provide subject-specific
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summaries of the individual trajectories. Thus, the primary goal of the LMM in step 1 is that of obtaining
predicted random effects that are good summaries of how the trajectory of a given subject differs from the
population average. In practice, such purpose may be more easily achieved using a simple mixed model
that allows for a clear interpretation of its random effects, rather than using a complex one where
the interpretation of each random effect may be unclear / complicated. The LMM of equation (3)
(or, alternatively, the same model with follow-up time included as covariate instead of age) is a good
example of simple LMM with clearly interpretable random effects, as the random intercept allows to
distinguish subjects with high and low initial levels of the covariate, and the random slope to identify
subjects with faster and slower progression rates. Therefore, even though fit_lmms makes it possible
to consider complex fixed and random effects formulas, we still advise users to consider simpler mixed
models in step 1 (and to compare the predictive performance of PRC using either approach, eventually
choosing the approach that delivers more accurate predictions if there is a substantial difference).

A second important modelling choice when using pencal is which penalty function should be used
in step 3. In general, this is a modelling choice that may dependent on the specific application and
its features (sample size, number of predictors and number of available repeated measurements per
subject). Signorelli et al. (2021) performed several simulation studies focused on situations with small
sample sizes (n = 100 and n = 300) and sparse data generating processes for the survival outcome,
whose results showed that the ridge and elasticnet penalty yielded better performance than the lasso
penalty. Our experience is that in general the ridge penalty may be preferable both to elasticnet and
the lasso in scenarios with small or moderate sample sizes, where little information is available to
estimate the α tuning parameter of elasticnet or to reliably perform variable selection with the lasso.
Beyond this, it is always possible to use a data-driven approach to choose which penalty to use by
estimating PRC using the 3 different penalties and comparing how this affects predictive performance.

6.1 Software and code availability

The R package pencal can be downloaded from CRAN at cran.r-project.org/package=pencal. The de-
velopment version of the package is available on Github at github.com/mirkosignorelli/pencal_devel.
The code used in the simulations for the evaluation of computing time is available at
github.com/mirkosignorelli/pencal_sims/.
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