{r, echo = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-" )
The goal of pivmet
is to propose some pivotal methods in
order to:
undo the label switching problem which naturally arises during the MCMC sampling in Bayesian mixture models \(\rightarrow\) pivotal relabelling (Egidi et al. 2018a)
fit sparse finite Gaussian mixtures
initialize the K-means algorithm aimed at obtaining a good clustering solution \(\rightarrow\) pivotal seeding (Egidi et al. 2018b)
You can install the CRAN version of pivmet
with:
{r, eval = FALSE} install.packages("pivmet") library(pivmet)
You can install the development version of pivmet
from
Github with:
{r gh-installation, eval = FALSE} # install.packages("devtools") devtools::install_github("leoegidi/pivmet")
First of all, we load the package and we import the fish
dataset belonging to the bayesmix
package:
{r example} library(bayesmix) library(pivmet) data(fish) y <- fish[,1] N <- length(y) # sample size k <- 5 # fixed number of clusters nMC <- 12000 # MCMC iterations
Then we fit a Bayesian Gaussian mixture using the
piv_MCMC
function:
{r fit, message =FALSE, warning = FALSE} res <- piv_MCMC(y = y, k = k, nMC = nMC)
Finally, we can apply pivotal relabelling and inspect the new
posterior estimates with the functions piv_rel
and
piv_plot
, respectively:
{r plot, message =FALSE, warning = FALSE} rel <- piv_rel(mcmc=res) piv_plot(y = y, mcmc = res, rel_est = rel, type = "chains") piv_plot(y = y, mcmc = res, rel_est = rel, type = "hist")
To allow sparse finite mixture fit, we could select the argument
sparsity = TRUE
:
{r sparsity, message =FALSE, warning = FALSE} res2 <- piv_MCMC(y, k, nMC, sparsity = TRUE, priors = list(alpha = rep(0.001, k))) # sparse on eta barplot(table(res2$nclusters), xlab= expression(K["+"]), col = "blue", border = "red", main = expression(paste("p(",K["+"], "|y)")), cex.main=3, yaxt ="n", cex.axis=2.4, cex.names=2.4, cex.lab=2)
Sometimes K-means algorithm does not provide an optimal clustering
solution. Suppose to generate some clustered data and to detect one
pivotal unit for each group with the MUS
(Maxima Units
Search algorithm) function:
```{r mus, echo =TRUE, eval = TRUE, message = FALSE, warning = FALSE} library(mvtnorm)
#generate some data
set.seed(123) n <- 620 centers <- 3 n1 <- 20 n2 <- 100 n3 <- 500 x <- matrix(NA, n,2) truegroup <- c( rep(1,n1), rep(2, n2), rep(3, n3))
for (i in 1:n1){ x[i,]=rmvnorm(1, c(1,5), sigma=diag(2))} for (i in 1:n2){ x[n1+i,]=rmvnorm(1, c(4,0), sigma=diag(2))} for (i in 1:n3){ x[n1+n2+i,]=rmvnorm(1, c(6,6), sigma=diag(2))}
H <- 1000 a <- matrix(NA, H, n)
for (h in 1:H){ a[h,] <- kmeans(x,centers)$cluster }
#build the similarity matrix sim_matr <- matrix(NA, n,n) for (i in 1:(n-1)){ for (j in (i+1):n){ sim_matr[i,j] <- sum(a[,i]==a[,j])/H sim_matr[j,i] <- sim_matr[i,j] } }
cl <- kmeans(x, centers, nstart=10)$cluster mus_alg <- MUS(C = sim_matr, clusters = cl, prec_par = 5)
Quite often, classical K-means fails in recognizing the *true* groups:
```{r kmeans_plots, echo =TRUE, fig.show='hold', eval = TRUE, message = FALSE, warning = FALSE}
# launch classical kmeans
kmeans_res <- kmeans(x, centers, nstart = 10)
# plots
par(mfrow=c(1,2))
colors_cluster <- c("grey", "darkolivegreen3", "coral")
colors_centers <- c("black", "darkgreen", "firebrick")
graphics::plot(x, col = colors_cluster[truegroup]
,bg= colors_cluster[truegroup], pch=21,
xlab="y[,1]",
ylab="y[,2]", cex.lab=1.5,
main="True data", cex.main=1.5)
graphics::plot(x, col = colors_cluster[kmeans_res$cluster],
bg=colors_cluster[kmeans_res$cluster], pch=21, xlab="y[,1]",
ylab="y[,2]", cex.lab=1.5,main="K-means", cex.main=1.5)
points(kmeans_res$centers, col = colors_centers[1:centers],
pch = 8, cex = 2)
In such situations, we may need a more robust version of the
classical K-means. The pivots may be used as initial seeds for a
classical K-means algorithm. The function piv_KMeans
works
as the classical kmeans
function, with some optional
arguments (in the figure below, the colored triangles represent the
pivots).
```{r musk, fig.show=‘hold’} # launch piv_KMeans piv_res <- piv_KMeans(x, centers) # plots par(mfrow=c(1,2), pty=“s”) colors_cluster <- c(“grey”, “darkolivegreen3”, “coral”) colors_centers <- c(“black”, “darkgreen”, “firebrick”) graphics::plot(x, col = colors_cluster[truegroup], bg= colors_cluster[truegroup], pch=21, xlab=“x[,1]”, ylab=“x[,2]”, cex.lab=1.5, main=“True data”, cex.main=1.5)
graphics::plot(x, col = colors_cluster[piv_res\(cluster], bg=colors_cluster[piv_res\)cluster], pch=21, xlab=“x[,1]”, ylab=“x[,2]”, cex.lab=1.5, main=“piv_Kmeans”, cex.main=1.5) points(x[piv_res\(pivots[1],1], x[piv_res\)pivots[1],2], pch=24, col=colors_centers[1],bg=colors_centers[1], cex=1.5) points(x[piv_res\(pivots[2],1], x[piv_res\)pivots[2],2], pch=24, col=colors_centers[2], bg=colors_centers[2], cex=1.5) points(x[piv_res\(pivots[3],1], x[piv_res\)pivots[3],2], pch=24, col=colors_centers[3], bg=colors_centers[3], cex=1.5) points(piv_res$centers, col = colors_centers[1:centers], pch = 8, cex = 2)
```
Egidi, L., Pappadà, R., Pauli, F. and Torelli, N. (2018a). Relabelling in Bayesian Mixture Models by Pivotal Units. Statistics and Computing, 28(4), 957-969.
Egidi, L., Pappadà, R., Pauli, F., Torelli, N. (2018b). K-means seeding via MUS algorithm. Conference Paper, Book of Short Papers, SIS2018, ISBN: 9788891910233.