Version: | 1.0.2 |
Date: | 2010-02-28 |
Title: | Poisson-Tweedie Exponential Family Models |
Author: | David Pechel Cactcha, Laure Pauline Fotso and Celestin C Kokonendji |
Maintainer: | David Pechel Cactcha <davidpechel@uy1.uninet.cm> |
Depends: | R (≥ 2.10.0) |
Description: | Simulation of models Poisson-Tweedie. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://CRAN.R-project.org/package=poistweedie |
Packaged: | 2023-11-30 15:47:23 UTC; hornik |
Repository: | CRAN |
Date/Publication: | 2023-11-30 15:49:31 UTC |
Encoding: | UTF-8 |
NeedsCompilation: | no |
The individual probabilities of Y when Y follows a Poisson-Tweedie Distributions
Description
Let X be a non-negative random variable following \mathcal{T}_{P}(\theta , \lambda)
. If a discrete random
variable Y is such that the conditional distribution of Y given X is Poisson with mean
X, then the EDM generated by the distribution of Y is of the Poisson-Tweedie class. For p>=1
individual probabilities of Y\sim\mathcal{P\mathcal{T}_{P}(\theta ,\lambda )}
when Y follows a Poisson-Tweedie Distributions are:
Pr(Y=y)=\int_{0}^{\infty}\frac{e^{-x}x^{y}}{y!}\mathcal{T}_{P}(\theta , \lambda)d(x), y=0,1,
.
For p = 1, it is a Neyman type A distribution; for 1<p<2
, then Poisson-compound Poisson distribution is obtained;
for p = 2,the Poisson-Tweedie model PT_{2}\left(\mu,\lambda\right)
correspond to the negative binomiale law BN\left(
\lambda,\frac{1}{1+\mu}\right)
; and, for p = 3, it is the Sichel or Poisson-inverse
Gaussian distribution (e.g. Willmot, 1987). Also, when p\longrightarrow\infty
,
\lambda=\frac{\mu\times\left( 1-\theta_{0}\right) }{1+\mu}
and the
\lambda=\mu\simeq-\theta_{0}
, the Poisson-Tweedie model
PT_{p}\left( \mu,\lambda\right)
correspond to the poisson law
P_{y}\left( \lambda^{2}\right)
.
Usage
dpoistweedie(y, p, mu, lambda, theta0, log)
densitept1(p, n, mu, lambda, theta0)
densitept2(p, n, mu, lambda, theta0)
dpt1(p, n, mu, lambda, theta0)
dpt1Log(p, n, mu, lambda, theta0)
dpt2(p, n, mu, lambda, theta0)
dpt2Log(p, n, mu, lambda, theta0)
dptp(p, n, mu, lambda, theta0)
dptpLog(p, n, mu, lambda, theta0)
gam1.1(y, lambda)
gam1.2(y, lambda)
imfx0(x0,p,mu,theta0)
moyennePT(p,omega,theta0)
omega(p,mu,theta0)
testOmegaPT(p,n)
Arguments
y |
vector of (non-negative integer) quantiles |
p |
is a real index related to a precise model |
n |
non-negative integer (length of y) |
x0 |
is a real index |
mu |
the mean |
omega |
is a real index. |
lambda |
the dispersion parameter |
theta0 |
the canonical parameter |
log |
logical; if TRUE, probabilities y are given as log(y). |
Details
The Poisson-Tweedie distributions arethe EDMs with a variance of the form
V_{p}^{\mathcal{PT}}\left( \mu\right) =\mu+\mu^{p}\exp\left\{ \left(2-p\right) \Phi_{p}\left( \mu\right) \right\} ,\mu>0
,
where \Phi_{p}\left( \mu\right)
a generally implicit, denotes the inverse of the increansing function
\omega\longrightarrow\frac{d\left\{ \ln IE\left( e^{wy}\right) \right\}}{dw}
. omega(p,mu,theta0) is a function whose permit to determine the value of w.
Value
density (dpoistweedie
),for the given Poisson-Tweedie distribution with parameters
Author(s)
Cactha David Pechel, Laure Pauline Fotso and Celestin C Kokonendji Maintainer: Cactha David Pechel ( <davidpechel@yahoo.fr>)
References
Dunn, Peter K and Smyth, Gordon K (To appear). Series evaluation of Tweedie exponential dispersion model densities Statistics and Computing.
Dunn, Peter K and Smyth, Gordon K (2001). Tweedie family densities: methods of evaluation. Proceedings of the 16th International Workshop on Statistical Modelling, Odense, Denmark, 2–6 July
Hougaard, P., Lee, M-L.T. and Whitmore, G.A. (1997). Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes, Biometrics 53, 1225–1238
Jorgensen, B. (1987). Exponential dispersion models. Journal of the Royal Statistical Society, B, 49, 127–162.
Kokonendji, C.C., Demeetrio, C.G.B. and Dossou-Gbete, S. (2004). Some discrete exponential dispersion models: Poisson-Tweedie and Hinde-Demetrio classes. SORT: Statistics and Operations Research Transactions 28 (2), 201–214.
See Also
Examples
## dpoistweedie(y, power, mu,lambda,theta0,log = FALSE)
## Plot dpois() and dpoistweedie() with log=FALSE
layout(matrix(1 :1, 1, 1))
layout.show(2)
power <- exp(10)
mu <-10
lambda <- 10
theta0<--10
lambda1<-100
y <- 0:200
## plot dpoistweedie function with log = FALSE
d1<-dpoistweedie(y,power,mu,lambda,theta0,log = FALSE)
d2<-dpois(y,lambda1,log=FALSE)
erreure<-d1-d2
plot (y,d1,col='blue', type='h',xlab="y
avec y=0:200, power=exp(30),mu=10, lambda=10,
theta0=-10, lambda1=100", ylab="densite P(100)",
main = "dpoistweedie(*,col='blue' log=FALSE)
et dpois(*,col='red' log=FALSE)")
lines(y,d2,type ="p",col='red',lwd=2)
sum(abs(erreure))
## Plot dnbinom() and dpoistweedie()
layout(matrix(1 :1, 1, 1))
layout.show(2)
power<-2
mu<-10
lambda <- 1
theta0<-0
prob<-1-(mu/(1+mu))
y <- seq(0,50, by =3)
## plot a dpoistweedie function with log=FALSE
d1<-dpoistweedie(y,power,mu,lambda,theta0,log=FALSE)
d2<-dnbinom(y,lambda,prob, log=FALSE)
erreure<-d1-d2
plot (y,d1,col='blue', type='h',xlab="y
avec y=seq(0,50,by=3), power=2,mu=10,
lambda=1, thetao=0", ylab="densite NB(1,1/11)"
,main = "dnpoistweedie(*,col='blue' log=FALSE)
et dnbinom(*,col='red' log=FALSE)")
lines(y,d2,type ="p",col='red',lwd=2)
abs(erreure)
Poisson-Tweedie (Some discrete exponential dispersion models)
Description
Density, Log of density, variance for the Poisson-Tweedie family of distributions
Usage
poistweedie(x, n, p, mu, lambda, theta0, lower.tail = TRUE, log.p = FALSE,
fonction = "PROBABILITE")
poisson(x, n, p, lambda1, lower.tail = TRUE, log.p = FALSE,
fonction = "PROBABILITE")
nbinomiale(x, n, p, lambda1, p1, lower.tail = TRUE, log.p = FALSE,
fonction = "PROBABILITE")
Arguments
x |
vector of (non-negative integer) quantiles. |
p |
is a real index related to a precise model. |
p1 |
is a real index related to a precise model. |
n |
non-negative integer |
mu |
the mean. |
lambda |
the dispersion parameter. |
lambda1 |
the dispersion parameter. |
theta0 |
the canonical parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
fonction |
is a string |
Details
Density, Log of density, variance for the Poisson-Tweedie family of distributions
Author(s)
Cactha David Pechel, Laure Pauline Fotso and Celestin C Kokonendji Maintainer: Cactha David Pechel ( <davidpechel@yahoo.fr>)
See Also
Examples
## poistweedie(x, n, p, mu, lambda, theta0, lower.tail = TRUE,
## log.p = FALSE, fonction = "PROBABILITE")
x <- 0:200
p <- 1.5
mu <-10
lambda <- 10
theta0<--10
d1<-poistweedie(x, n, p, mu, lambda, theta0, lower.tail = TRUE,
log.p = FALSE, fonction = "PROBABILITE")
Distribution function for the Poisson-Tweedie family
Description
Distribution function, for the Poisson-Tweedie family of distributions
Usage
ppoistweedie(q, p, mu, lambda, theta0, lower.tail, log.p)
Arguments
q |
vector of quantiles. |
p |
is a real index related to a precise model. |
mu |
the mean. |
lambda |
the dispersion parameter. |
theta0 |
the canonical parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
Details
The Poisson-Tweedie family of distributions belong to the class of exponential dispersion models (EDMs), famous for their role in generalized linear models.
Value
probability (ppoistweedie
), for the given Poisson-Tweedie distribution with parameters
Author(s)
Cactha David Pechel, Laure Pauline Fotso and Celestin C Kokonendji Maintainer: Cactha David Pechel ( <davidpechel@yahoo.fr>)
See Also
Examples
## function ppoistweedie(q, power, mu,lambda,theta0,
## lower.tail = TRUE, log.p = FALSE)
## Plot ppois() et ppoistweedie() avec log.p=FALSE
layout(matrix(1 :1, 1, 1))
layout.show(1)
power<-exp(30)
mu<-5
lambda <- 5
theta0<--5
prob<-1-(mu/(1+mu))
lambda1<-lambda^2
q <- 0:100
## function ppoistweedie function with log=FALSE
d1<-ppoistweedie(q,power,mu,lambda,theta0,lower.tail=TRUE,log.p=FALSE)
d2<-ppois(q,lambda1,lower.tail=TRUE,log.p=FALSE)
erreure<- d1-d2
plot (q,d1,col='blue', type='h',xlab="q
avec q=0:100, power=exp(30),mu=5, lambda=5,
theta0=-5, lambda1=25", ylab="fonction de
repartition P(25)",main = "ppoistweedie(*,col='blue' log=FALSE)
et ppois(*,col='red' log=FALSE)")
lines(q,d2,type ="p",col='red',lwd=2)
sum(abs(erreure))
Quantile function for the Poisson-Tweedie family of distributions
Description
Quantile function for the Poisson-Tweedie family of distributions
Usage
qpoistweedie(p1, p, mu, lambda, theta0, lower.tail, log.p)
Arguments
p1 |
vector of probabilities. |
p |
is a real index related to a precise model. |
mu |
the mean. |
lambda |
the dispersion parameter. |
theta0 |
the canonical parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
Details
The Poisson-Tweedie family of distributions belong to the class of exponential dispersion models (EDMs), famous for their role in generalized linear models. T
Value
quantile (qpoistweedie
)
for the given Poisson-Tweedie distribution with parameters
Author(s)
Cactha David Pechel, Laure Pauline Fotso and Celestin C Kokonendji Maintainer: Cactha David Pechel ( <davidpechel@yahoo.fr>)
See Also
Examples
## function qpoistweedie(p, power, mu,lambda,theta0,
## lower.tail = TRUE, log.p = FALSE)
## Plot qpois() and qpoistweedie() with log.p=FALSE
layout(matrix(1 :1, 1, 1))
layout.show(1)
power<-exp(30)
mu<-10
lambda <- 10
theta0<--10
prob<-1-(mu/(1+mu))
lambda1<-100
p <- runif(50)
p
## plot of qpoistweedie function with log=FALSE
d1<-ppoistweedie(p,power,mu,lambda,theta0,lower.tail=TRUE,log.p=FALSE)
d2<-ppois(p,lambda1,lower.tail=TRUE,log.p=FALSE)
erreure<- d1-d2
plot (p,d1,col='blue', type='h',xlab="p
avec p=runif(50), power=exp(30),mu=10, lambda=10,
theta0=-10, lambda1=100, lower.tail=TRUE",
ylab="quantile function P(100)",main =
"qpoistweedie(*,col='blue' log.p=FALSE)
et qpois(*,col='red' log.p=FALSE)")
lines(p,d2,type ="p",col='red',lwd=2)
sum(abs(erreure))
Random generation for the Poisson-Tweedie family of distributions
Description
Random generation for the Poisson-Tweedie family of distributions
Usage
rpoistweedie(n, p, mu, lambda, theta0)
Arguments
n |
number of random values to return. |
p |
vector of probabilities. |
mu |
the mean. |
lambda |
the dispersion parameter. |
theta0 |
the canonical parameter. |
Details
The Poisson-Tweedie family of distributions belong to the class of exponential dispersion models (EDMs), famous for their role in generalized linear models.
Value
random sample (rpoistweedie
)
for the given Poisson-Tweedie distribution with parameters
Author(s)
Cactha David Pechel, Laure Pauline Fotso and Celestin C Kokonendji Maintainer: Cactha David Pechel ( <davidpechel@yahoo.fr>)
See Also
Examples
## --------------- function rpoistweedie()---------------- ##
layout(matrix(2 :1, 2,1))
layout.show(2)
power<-exp(30)
mu<-10
lambda <- 10
theta0<--10
prob<-1-(mu/(1+mu))
lambda1<-100
n<-10
set.seed(123)
x1<-rpoistweedie(n,power,mu,lambda,theta0)
set.seed(123)
x2<-rpois(n,lambda1)
hist(x1, xlim = c(min(x1),max(x1)), probability = FALSE,
col ='blue',xlab="modalit\'{e}s: x1",ylab="effectifs ",
nclass = max(x1) - min(x1),main="Histogramme de x1
(lambda=100, n=10)")
hist(x2, xlim = c(min(x2),max(x2)), probability = FALSE,
col ='blue',xlab="modalit\'{e}s: x2 ",ylab="effectifs ",
nclass = max(x2) - min(x2),main="Histogramme de x2
(lambda1=100, n=10)")
sum(x2-x1)
variance for the Poisson-Tweedie family of distributions
Description
Variance for the Poisson-Tweedie family of distributions
Usage
varpt(mu, p, theta0)
Arguments
p |
is a real index related to a precise model. |
mu |
the mean. |
theta0 |
the canonical parameter. |
Details
variance for the Poisson-Tweedie family of distributions
Author(s)
Cactha David Pechel, Laure Pauline Fotso and Celestin C Kokonendji Maintainer: Cactha David Pechel ( <davidpechel@yahoo.fr>)
See Also
Examples
## plot of variance
layout(matrix(1:1,1,1))
layout.show(1)
mu <- seq(0.001,6,l=100)
var <-varpt(mu,p=5000,theta0=-150)
plot(mu, var, type = "l", col = "green", lwd=1,main="variance(p,mu,theta0=-150)")
grid(nx=1,ny=1, lty=1,lwd=2)
lines(mu,varpt(mu,p=1,theta0=-150), type = "l", col = "blue", lwd=1)
lines(mu,varpt(mu,p=2,theta0=-150), type = "l", col = "black", lwd=1)
lines(mu,varpt(mu,p=1.5,theta0=-150), type = "l", col = "yellow", lwd=1)
lines(mu,varpt(mu,p=2.5,theta0=-150), type = "l", col = "cyan", lwd=1)
lines(mu,varpt(mu,p=3,theta0=-150), type = "l", col = "magenta", lwd=1)
segments(4,2.5,4.5,2.5,col="blue" )
text(5,2.5,"p=1",cex=0.8)
segments(4,2,4.5,2,col="yellow" )
text(5,2,"1.5",cex=0.8)
segments(4,1.5,4.5,1.5,col= "black")
text(5, 1.5,"p=2",cex=0.8)
segments(4,1,4.5,1,col="cyan" )
text(5, 1,"p=2.5" ,cex=0.8)
segments(4,0.5,4.5,0.5,col="magenta" )
text(5, 0.5,"p=3" ,cex=0.8)
segments(4,0,4.5,0,col= "green" )
text(5, 0,"p=5000",cex=0.8)