The following example shows a complete program. The example illustrates how procs functions work together, and interact with other sassy functions to create a demographics table with p-value statistics.
library(sassy)
# Prepare Log -------------------------------------------------------------
options("logr.autolog" = TRUE,
        "logr.on" = TRUE,
        "logr.notes" = FALSE,
        "procs.print" = FALSE)
# Get temp directory
tmp <- tempdir()
# Open log
lf <- log_open(file.path(tmp, "example1.log"))
# Prepare formats ---------------------------------------------------------
sep("Prepare formats")
put("Age categories")
agecat <- value(condition(x >= 18 & x <= 29, "18 to 29"),
                condition(x >=30 & x <= 39, "30 to 39"),
                condition(x >=40 & x <=49, "40 to 49"),
                condition(x >= 50, ">= 50"),
                condition(TRUE, "Out of range"),
                as.factor = TRUE) 
put("Sex decodes")
fmt_sex <- value(condition(is.na(x), "Missing"),
                 condition(x == "M", "Male"),
                 condition(x == "F", "Female"),
                 condition(TRUE, "Other"),
                 as.factor = TRUE) 
put("Race decodes")
fmt_race <- value(condition(is.na(x), "Missing"),
                  condition(x == "WHITE", "White"),
                  condition(x == "BLACK", "Black or African American"),
                  condition(TRUE, "Other"), 
                  as.factor = TRUE)
put("Compile format catalog")
fc <- fcat(MEAN = "%.1f", STD = "(%.2f)", 
           Q1 = "%.1f", Q3 = "%.1f",
           MIN = "%d", MAX = "%d", 
           CNT = "%2d", PCT = "(%5.1f%%)",
           AGECAT = agecat,
           SEX = fmt_sex,
           RACE = fmt_race) 
# Load and Prepare Data ---------------------------------------------------
sep("Prepare Data")
put("Create sample ADSL data.")
adsl <- read.table(header = TRUE, text = '
  SUBJID  ARM    SEX  RACE    AGE
  "001"   "ARM A" "F"  "WHITE" 19 
  "002"   "ARM B" "F"  "WHITE" 21 
  "003"   "ARM C" "F"  "WHITE" 23 
  "004"   "ARM D" "F"  "BLACK" 28 
  "005"   "ARM A" "M"  "WHITE" 37  
  "006"   "ARM B" "M"  "WHITE" 34 
  "007"   "ARM C" "M"  "WHITE" 36  
  "008"   "ARM D" "M"  "WHITE" 30   
  "009"   "ARM A" "F"  "WHITE" 39  
  "010"   "ARM B" "F"  "WHITE" 31  
  "011"   "ARM C" "F"  "BLACK" 33 
  "012"   "ARM D" "F"  "WHITE" 38 
  "013"   "ARM A" "M"  "BLACK" 37 
  "014"   "ARM B" "M"  "WHITE" 34  
  "015"   "ARM C" "M"  "WHITE" 36
  "016"   "ARM A" "M"  "WHITE" 40')  
put("Categorize AGE")
adsl$AGECAT <- fapply(adsl$AGE, agecat) 
put("Log starting dataset")
put(adsl)
put("Get ARM population counts")
proc_freq(adsl, tables = ARM, 
          output = long,
          options = v(nopercent, nonobs)) -> arm_pop
# Age Summary Block -------------------------------------------------------
sep("Create summary statistics for age")
put("Call means procedure to get summary statistics for age")
proc_means(adsl, var = AGE,
           stats = v(n, mean, std, median, q1, q3, min, max),
           by = ARM, 
           options = v(notype, nofreq)) -> age_stats 
put("Combine stats")
datastep(age_stats, 
         format = fc,
         drop = find.names(age_stats, start = 4), 
         {
           `Mean (SD)` <- fapply2(MEAN, STD)
           Median <- MEDIAN
           `Q1 - Q3` <- fapply2(Q1, Q3, sep = " - ")
           `Min - Max` <- fapply2(MIN, MAX, sep = " - ")
           
           
         }) -> age_comb
put("Transpose ARMs into columns")
proc_transpose(age_comb, 
               var = names(age_comb),
               copy = VAR, id = BY, 
               name = LABEL) -> age_trans
put("Calculate aov")
age_aov <- aov(AGE ~ ARM, data = adsl) |> 
  summary() 
put("Get aov into proper data frame") 
age_aov <- age_aov[[1]][1, c("F value", "Pr(>F)")]
names(age_aov) <- c("AOV.F", "AOV.P")
age_aov <- as.data.frame(age_aov) |> put()
put("Combine aov statistics")
datastep(age_aov, 
         keep = PVALUE,
         format = fc,
         {
           PVALUE <- fapply2(AOV.F, AOV.P)
           
         }) -> age_aov_comb 
put("Append aov")
datastep(age_trans, merge = age_aov_comb, {}) -> age_block
# Sex Block ---------------------------------------------------------------
sep("Create frequency counts for SEX")
put("Get sex frequency counts")
proc_freq(adsl, tables = SEX,
          by = ARM,
          options = nonobs) -> sex_freq 
put("Combine counts and percents.")
datastep(sex_freq, 
         format = fc, 
         rename = list(CAT = "LABEL"),
         drop = v(CNT, PCT), 
         {
           
           CNTPCT <- fapply2(CNT, PCT)
           
         }) -> sex_comb 
put("Transpose ARMs into columns")
proc_transpose(sex_comb, id = BY, 
               var = CNTPCT,
               copy = VAR, by = LABEL) -> sex_trans
put("Clean up")
datastep(sex_trans, drop = NAME, 
         {
           
           LABEL <- fapply(LABEL, fc$SEX)
           
         }) -> sex_cnts
put("Sort by label")
proc_sort(sex_cnts, by = LABEL) -> sex_cnts
put("Get sex chisq")
proc_freq(adsl, tables = v(SEX * ARM),
          options = v(chisq, notable)) -> sex_chisq
put("Combine chisq statistics")
datastep(sex_chisq,
         format = fc,
         keep = PVALUE, 
         {
           
           PVALUE = fapply2(VAL, PROB)
         }) -> sex_chisq_comb 
put("Append chisq")
datastep(sex_cnts, 
         merge = sex_chisq_comb, 
         {}) -> sex_block
# Race block --------------------------------------------------------------
sep("Create frequency counts for RACE")
put("Get race frequency counts")
proc_freq(adsl, tables = RACE,
          by = ARM,
          options = nonobs) -> race_freq 
put("Combine counts and percents.")
datastep(race_freq, 
         format = fc, 
         rename = list(CAT = "LABEL"),
         drop = v(CNT, PCT), 
         {
           
           CNTPCT <- fapply2(CNT, PCT)
           
         }) -> race_comb 
put("Transpose ARMs into columns")
proc_transpose(race_comb, id = BY, var = CNTPCT,
               copy = VAR, by = LABEL) -> race_trans
put("Clean up")
datastep(race_trans, drop = NAME,
         where = expression(del == FALSE),
         {
           LABEL <- fapply(LABEL, fc$RACE)
           LABEL <- factor(LABEL, levels = levels(fc$RACE))
           
         }) -> race_cnts 
put("Sort by label")
proc_sort(race_cnts, by = LABEL) -> race_block
put("Get race chisq")
proc_freq(adsl, tables = RACE * ARM,
          options = v(chisq, notable)) -> race_chisq 
put("Combine chisq statistics")
datastep(race_chisq,
         format = fc,
         keep = c("PVALUE"), 
         {
           
           PVALUE = fapply2(CHISQ, CHISQ.P)
         }) -> race_chisq_comb
put("Append chisq")
datastep(race_cnts, merge = race_chisq_comb, {}) -> race_block
# Age Group Block ----------------------------------------------------------
sep("Create frequency counts for Age Group")
put("Get age group frequency counts")
proc_freq(adsl,
          table = AGECAT,
          by = ARM,
          options = nonobs) -> ageg_freq
put("Combine counts and percents and assign age group factor for sorting")
datastep(ageg_freq,
         format = fc,
         keep = v(VAR, LABEL, BY, CNTPCT),
         {
           CNTPCT <- fapply2(CNT, PCT)
           LABEL <- factor(CAT, levels = levels(fc$AGECAT))
         }) -> ageg_comb
put("Sort by age group factor")
proc_sort(ageg_comb, by = v(BY, LABEL)) -> ageg_sort 
put("Tranpose age group block")
proc_transpose(ageg_sort,
               var = CNTPCT,
               copy = VAR,
               id = BY,
               by = LABEL) -> ageg_trans 
put("Some clean up")
datastep(ageg_trans,
         drop = NAME,
         {}) -> ageg_block
put("Get ageg chisq")
proc_freq(adsl, tables = AGECAT * ARM,
          options = v(chisq, notable)) -> ageg_chisq 
put("Combine chisq statistics")
datastep(ageg_chisq,
         format = fc,
         keep = c("PVALUE"), 
         {
           PVALUE = fapply2(VAL, PROB)
         }) -> ageg_chisq_comb 
put("Append chisq")
datastep(ageg_cnts, merge = ageg_chisq_comb, 
         {}) -> ageg_block
put("Combine blocks into final data frame")
datastep(age_block, 
         set = list(ageg_block, sex_block, race_block),
         {}) -> final
# Report ------------------------------------------------------------------
sep("Create and print report")
var_fmt <- c("AGE" = "Age", "AGECAT" = "Age Group", "SEX" = "Sex", "RACE" = "Race")
plbl <- "Tests of Association{supsc('1')}\n Value (P-Value)"
# Create Table
tbl <- create_table(final, first_row_blank = TRUE) |>  
  column_defaults(from = `ARM A`, to = `ARM D`, align = "center", width = 1.1) |>  
  stub(vars = c("VAR", "LABEL"), "Variable", width = 2.5) |>  
  define(VAR, blank_after = TRUE, dedupe = TRUE, label = "Variable",
         format = var_fmt,label_row = TRUE) |>  
  define(LABEL, indent = .25, label = "Demographic Category") |> 
  define(`ARM A`,  label = "Placebo", n = arm_pop["ARM A"]) |>  
  define(`ARM B`,  label = "Drug 50mg", n = arm_pop["ARM B"]) |>  
  define(`ARM C`,  label = "Drug 100mg", n = arm_pop["ARM C"]) |>  
  define(`ARM D`,  label = "Competitor", n = arm_pop["ARM D"]) |>  
  define(PVALUE, label = plbl, width = 2, dedupe = TRUE, align = "center") |> 
  titles("Table 1.0", "Analysis of Demographic Characteristics", 
         "Safety Population", bold = TRUE) |> 
  footnotes("Program: DM_Table.R",
            "NOTE: Denominator based on number of non-missing responses.",
            "{supsc('1')}Pearson's Chi-Square tests will be used for "
            %p% "Categorical variables and ANOVA tests for continuous variables.") 
rpt <- create_report(file.path(tmp, "ProcsDemoDM.rtf"), 
                     output_type = "RTF", 
                     font = "Times") |> 
  page_header("Sponsor: Company", "Study: ABC") |> 
  set_margins(top = 1, bottom = 1) |>  
  add_content(tbl) |> 
  page_footer("Date Produced: {Sys.Date()}", right = "Page [pg] of [tpg]")
put("Write out the report")
res <- write_report(rpt)
# Clean Up ----------------------------------------------------------------
sep("Clean Up")
put("Close log")
log_close()
# Uncomment to view report
# file.show(res$modified_path)
# Uncomment to view log
# file.show(lf)Here is the output:
And here is the log:
=========================================================================
Log Path: C:/Users/dbosa/AppData/Local/Temp/RtmpAXQUo8/log/example1.log
Program Path: C:/Projects/Archytas/Westat/Tutorial2/Project/Chisq2.R
Working Directory: C:/Projects/Archytas/Westat/Tutorial2/Project
User Name: dbosa
R Version: 4.4.0 (2024-04-24 ucrt)
Machine: SOCRATES x86-64
Operating System: Windows 10 x64 build 22631
Base Packages: stats graphics grDevices utils datasets methods base
Other Packages: tidylog_1.0.2 procs_1.0.7 reporter_1.4.4 libr_1.3.3 logr_1.3.7
fmtr_1.6.4 common_1.1.3 sassy_1.2.4
Log Start Time: 2024-05-28 09:09:21.582908
=========================================================================
=========================================================================
Prepare formats
=========================================================================
Age categories
# A user-defined format: 5 conditions
  Name Type        Expression        Label Order
1  obj    U x >= 18 & x <= 29     18 to 29    NA
2  obj    U x >= 30 & x <= 39     30 to 39    NA
3  obj    U x >= 40 & x <= 49     40 to 49    NA
4  obj    U           x >= 50        >= 50    NA
5  obj    U              TRUE Out of range    NA
Sex decodes
# A user-defined format: 4 conditions
  Name Type Expression   Label Order
1  obj    U   is.na(x) Missing    NA
2  obj    U   x == "M"    Male    NA
3  obj    U   x == "F"  Female    NA
4  obj    U       TRUE   Other    NA
Race decodes
# A user-defined format: 4 conditions
  Name Type   Expression                     Label Order
1  obj    U     is.na(x)                   Missing    NA
2  obj    U x == "WHITE"                     White    NA
3  obj    U x == "BLACK" Black or African American    NA
4  obj    U         TRUE                     Other    NA
Compile format catalog
# A format catalog: 11 formats
- $MEAN: type S, "%.1f"
- $STD: type S, "(%.2f)"
- $Q1: type S, "%.1f"
- $Q3: type S, "%.1f"
- $MIN: type S, "%d"
- $MAX: type S, "%d"
- $CNT: type S, "%2d"
- $PCT: type S, "(%5.1f%%)"
- $AGECAT: type U, 5 conditions
- $SEX: type U, 4 conditions
- $RACE: type U, 4 conditions
=========================================================================
Prepare Data
=========================================================================
Create sample ADSL data.
Categorize AGE
Log starting dataset
   SUBJID   ARM SEX  RACE AGE   AGECAT
1       1 ARM A   F WHITE  19 18 to 29
2       2 ARM B   F WHITE  21 18 to 29
3       3 ARM C   F WHITE  23 18 to 29
4       4 ARM D   F BLACK  28 18 to 29
5       5 ARM A   M WHITE  37 30 to 39
6       6 ARM B   M WHITE  34 30 to 39
7       7 ARM C   M WHITE  36 30 to 39
8       8 ARM D   M WHITE  30 30 to 39
9       9 ARM A   F WHITE  39 30 to 39
10     10 ARM B   F WHITE  31 30 to 39
11     11 ARM C   F BLACK  33 30 to 39
12     12 ARM D   F WHITE  38 30 to 39
13     13 ARM A   M BLACK  37 30 to 39
14     14 ARM B   M WHITE  34 30 to 39
15     15 ARM C   M WHITE  36 30 to 39
16     16 ARM A   M WHITE  40 40 to 49
Get ARM population counts
proc_freq: input data set 16 rows and 6 columns
           tables: ARM
           output: long
           view: TRUE
           output: 1 datasets
  VAR STAT ARM A ARM B ARM C ARM D
1 ARM  CNT     5     4     4     3
=========================================================================
Create summary statistics for age
=========================================================================
Call means procedure to get summary statistics for age
proc_means: input data set 16 rows and 6 columns
            by: ARM
            var: AGE
            stats: n mean std median q1 q3 min max
            view: TRUE
            output: 1 datasets
     BY VAR N MEAN      STD MEDIAN Q1 Q3 MIN MAX
1 ARM A AGE 5 34.4 8.706320   37.0 37 39  19  40
2 ARM B AGE 4 30.0 6.164414   32.5 26 34  21  34
3 ARM C AGE 4 32.0 6.164414   34.5 28 36  23  36
4 ARM D AGE 3 32.0 5.291503   30.0 28 38  28  38
Combine stats
datastep: columns decreased from 10 to 7
     BY VAR N   Mean (SD) Median     Q1 - Q3 Min - Max
1 ARM A AGE 5 34.4 (8.71)   37.0 37.0 - 39.0   19 - 40
2 ARM B AGE 4 30.0 (6.16)   32.5 26.0 - 34.0   21 - 34
3 ARM C AGE 4 32.0 (6.16)   34.5 28.0 - 36.0   23 - 36
4 ARM D AGE 3 32.0 (5.29)   30.0 28.0 - 38.0   28 - 38
Transpose ARMs into columns
proc_transpose: input data set 4 rows and 7 columns
                var: BY VAR N Mean (SD) Median Q1 - Q3 Min - Max
                id: BY
                copy: VAR
                name: LABEL
                output dataset 5 rows and 6 columns
  VAR     LABEL       ARM A       ARM B       ARM C       ARM D
1 AGE         N           5           4           4           3
2 AGE Mean (SD) 34.4 (8.71) 30.0 (6.16) 32.0 (6.16) 32.0 (5.29)
3 AGE    Median        37.0        32.5        34.5        30.0
4 AGE   Q1 - Q3 37.0 - 39.0 26.0 - 34.0 28.0 - 36.0 28.0 - 38.0
5 AGE Min - Max     19 - 40     21 - 34     23 - 36     28 - 38
=========================================================================
Create frequency counts for SEX
=========================================================================
Get sex frequency counts
proc_freq: input data set 16 rows and 6 columns
           tables: SEX
           by: ARM
           view: TRUE
           output: 1 datasets
     BY VAR CAT CNT      PCT
1 ARM A SEX   F   2 40.00000
2 ARM A SEX   M   3 60.00000
3 ARM B SEX   F   2 50.00000
4 ARM B SEX   M   2 50.00000
5 ARM C SEX   F   2 50.00000
6 ARM C SEX   M   2 50.00000
7 ARM D SEX   F   2 66.66667
8 ARM D SEX   M   1 33.33333
Combine counts and percents.
datastep: columns decreased from 5 to 4
     BY VAR LABEL      CNTPCT
1 ARM A SEX     F  2 ( 40.0%)
2 ARM A SEX     M  3 ( 60.0%)
3 ARM B SEX     F  2 ( 50.0%)
4 ARM B SEX     M  2 ( 50.0%)
5 ARM C SEX     F  2 ( 50.0%)
6 ARM C SEX     M  2 ( 50.0%)
7 ARM D SEX     F  2 ( 66.7%)
8 ARM D SEX     M  1 ( 33.3%)
Transpose ARMs into columns
proc_transpose: input data set 8 rows and 4 columns
                by: LABEL
                var: CNTPCT
                id: BY
                copy: VAR
                name: NAME
                output dataset 2 rows and 7 columns
  VAR LABEL   NAME       ARM A       ARM B       ARM C       ARM D
1 SEX     F CNTPCT  2 ( 40.0%)  2 ( 50.0%)  2 ( 50.0%)  2 ( 66.7%)
2 SEX     M CNTPCT  3 ( 60.0%)  2 ( 50.0%)  2 ( 50.0%)  1 ( 33.3%)
Clean up
datastep: columns decreased from 7 to 6
  VAR  LABEL       ARM A       ARM B       ARM C       ARM D
1 SEX Female  2 ( 40.0%)  2 ( 50.0%)  2 ( 50.0%)  2 ( 66.7%)
2 SEX   Male  3 ( 60.0%)  2 ( 50.0%)  2 ( 50.0%)  1 ( 33.3%)
Sort by label
proc_sort: input data set 2 rows and 6 columns
           by: LABEL
           keep: VAR LABEL ARM A ARM B ARM C ARM D
           order: a
           output data set 2 rows and 6 columns
  VAR  LABEL       ARM A       ARM B       ARM C       ARM D
2 SEX   Male  3 ( 60.0%)  2 ( 50.0%)  2 ( 50.0%)  1 ( 33.3%)
1 SEX Female  2 ( 40.0%)  2 ( 50.0%)  2 ( 50.0%)  2 ( 66.7%)
=========================================================================
Create frequency counts for RACE
=========================================================================
Get race frequency counts
proc_freq: input data set 16 rows and 6 columns
           tables: RACE
           by: ARM
           view: TRUE
           output: 1 datasets
     BY  VAR   CAT CNT       PCT
1 ARM A RACE BLACK   1  20.00000
2 ARM A RACE WHITE   4  80.00000
3 ARM B RACE BLACK   0   0.00000
4 ARM B RACE WHITE   4 100.00000
5 ARM C RACE BLACK   1  25.00000
6 ARM C RACE WHITE   3  75.00000
7 ARM D RACE BLACK   1  33.33333
8 ARM D RACE WHITE   2  66.66667
Combine counts and percents.
datastep: columns decreased from 5 to 4
     BY  VAR LABEL      CNTPCT
1 ARM A RACE BLACK  1 ( 20.0%)
2 ARM A RACE WHITE  4 ( 80.0%)
3 ARM B RACE BLACK  0 (  0.0%)
4 ARM B RACE WHITE  4 (100.0%)
5 ARM C RACE BLACK  1 ( 25.0%)
6 ARM C RACE WHITE  3 ( 75.0%)
7 ARM D RACE BLACK  1 ( 33.3%)
8 ARM D RACE WHITE  2 ( 66.7%)
Transpose ARMs into columns
proc_transpose: input data set 8 rows and 4 columns
                by: LABEL
                var: CNTPCT
                id: BY
                copy: VAR
                name: NAME
                output dataset 2 rows and 7 columns
   VAR LABEL   NAME       ARM A       ARM B       ARM C
1 RACE BLACK CNTPCT  1 ( 20.0%)  0 (  0.0%)  1 ( 25.0%)
2 RACE WHITE CNTPCT  4 ( 80.0%)  4 (100.0%)  3 ( 75.0%)
        ARM D
1  1 ( 33.3%)
2  2 ( 66.7%)
Clean up
datastep: columns decreased from 7 to 6
   VAR                     LABEL       ARM A       ARM B
1 RACE Black or African American  1 ( 20.0%)  0 (  0.0%)
2 RACE                     White  4 ( 80.0%)  4 (100.0%)
        ARM C       ARM D
1  1 ( 25.0%)  1 ( 33.3%)
2  3 ( 75.0%)  2 ( 66.7%)
Sort by label
proc_sort: input data set 2 rows and 6 columns
           by: LABEL
           keep: VAR LABEL ARM A ARM B ARM C ARM D
           order: a
           output data set 2 rows and 6 columns
   VAR                     LABEL       ARM A       ARM B
2 RACE                     White  4 ( 80.0%)  4 (100.0%)
1 RACE Black or African American  1 ( 20.0%)  0 (  0.0%)
        ARM C       ARM D
2  3 ( 75.0%)  2 ( 66.7%)
1  1 ( 25.0%)  1 ( 33.3%)
=========================================================================
Create frequency counts for Age Group
=========================================================================
Get age group frequency counts
proc_freq: input data set 16 rows and 6 columns
           tables: AGECAT
           by: ARM
           view: TRUE
           output: 1 datasets
      BY    VAR      CAT CNT      PCT
1  ARM A AGECAT 18 to 29   1 20.00000
2  ARM A AGECAT 30 to 39   3 60.00000
3  ARM A AGECAT 40 to 49   1 20.00000
4  ARM B AGECAT 18 to 29   1 25.00000
5  ARM B AGECAT 30 to 39   3 75.00000
6  ARM B AGECAT 40 to 49   0  0.00000
7  ARM C AGECAT 18 to 29   1 25.00000
8  ARM C AGECAT 30 to 39   3 75.00000
9  ARM C AGECAT 40 to 49   0  0.00000
10 ARM D AGECAT 18 to 29   1 33.33333
11 ARM D AGECAT 30 to 39   2 66.66667
12 ARM D AGECAT 40 to 49   0  0.00000
Combine counts and percents and assign age group factor for sorting
datastep: columns decreased from 5 to 4
      VAR    LABEL    BY      CNTPCT
1  AGECAT 18 to 29 ARM A  1 ( 20.0%)
2  AGECAT 30 to 39 ARM A  3 ( 60.0%)
3  AGECAT 40 to 49 ARM A  1 ( 20.0%)
4  AGECAT 18 to 29 ARM B  1 ( 25.0%)
5  AGECAT 30 to 39 ARM B  3 ( 75.0%)
6  AGECAT 40 to 49 ARM B  0 (  0.0%)
7  AGECAT 18 to 29 ARM C  1 ( 25.0%)
8  AGECAT 30 to 39 ARM C  3 ( 75.0%)
9  AGECAT 40 to 49 ARM C  0 (  0.0%)
10 AGECAT 18 to 29 ARM D  1 ( 33.3%)
11 AGECAT 30 to 39 ARM D  2 ( 66.7%)
12 AGECAT 40 to 49 ARM D  0 (  0.0%)
Sort by age group factor
proc_sort: input data set 12 rows and 4 columns
           by: BY LABEL
           keep: VAR LABEL BY CNTPCT
           order: a a
           output data set 12 rows and 4 columns
      VAR    LABEL    BY      CNTPCT
1  AGECAT 18 to 29 ARM A  1 ( 20.0%)
2  AGECAT 30 to 39 ARM A  3 ( 60.0%)
3  AGECAT 40 to 49 ARM A  1 ( 20.0%)
4  AGECAT 18 to 29 ARM B  1 ( 25.0%)
5  AGECAT 30 to 39 ARM B  3 ( 75.0%)
6  AGECAT 40 to 49 ARM B  0 (  0.0%)
7  AGECAT 18 to 29 ARM C  1 ( 25.0%)
8  AGECAT 30 to 39 ARM C  3 ( 75.0%)
9  AGECAT 40 to 49 ARM C  0 (  0.0%)
10 AGECAT 18 to 29 ARM D  1 ( 33.3%)
11 AGECAT 30 to 39 ARM D  2 ( 66.7%)
12 AGECAT 40 to 49 ARM D  0 (  0.0%)
Tranpose age group block
proc_transpose: input data set 12 rows and 4 columns
                by: LABEL
                var: CNTPCT
                id: BY
                copy: VAR
                name: NAME
                output dataset 3 rows and 7 columns
     VAR    LABEL   NAME       ARM A       ARM B       ARM C
1 AGECAT 18 to 29 CNTPCT  1 ( 20.0%)  1 ( 25.0%)  1 ( 25.0%)
2 AGECAT 30 to 39 CNTPCT  3 ( 60.0%)  3 ( 75.0%)  3 ( 75.0%)
3 AGECAT 40 to 49 CNTPCT  1 ( 20.0%)  0 (  0.0%)  0 (  0.0%)
        ARM D
1  1 ( 33.3%)
2  2 ( 66.7%)
3  0 (  0.0%)
Some clean up
datastep: columns decreased from 7 to 6
     VAR    LABEL       ARM A       ARM B       ARM C       ARM D
1 AGECAT 18 to 29  1 ( 20.0%)  1 ( 25.0%)  1 ( 25.0%)  1 ( 33.3%)
2 AGECAT 30 to 39  3 ( 60.0%)  3 ( 75.0%)  3 ( 75.0%)  2 ( 66.7%)
3 AGECAT 40 to 49  1 ( 20.0%)  0 (  0.0%)  0 (  0.0%)  0 (  0.0%)
Combine blocks into final data frame
datastep: columns started with 6 and ended with 6
      VAR                     LABEL       ARM A       ARM B
1     AGE                         N           5           4
2     AGE                 Mean (SD) 34.4 (8.71) 30.0 (6.16)
3     AGE                    Median        37.0        32.5
4     AGE                   Q1 - Q3 37.0 - 39.0 26.0 - 34.0
5     AGE                 Min - Max     19 - 40     21 - 34
6  AGECAT                  18 to 29  1 ( 20.0%)  1 ( 25.0%)
7  AGECAT                  30 to 39  3 ( 60.0%)  3 ( 75.0%)
8  AGECAT                  40 to 49  1 ( 20.0%)  0 (  0.0%)
9     SEX                      Male  3 ( 60.0%)  2 ( 50.0%)
10    SEX                    Female  2 ( 40.0%)  2 ( 50.0%)
11   RACE                     White  4 ( 80.0%)  4 (100.0%)
12   RACE Black or African American  1 ( 20.0%)  0 (  0.0%)
         ARM C       ARM D
1            4           3
2  32.0 (6.16) 32.0 (5.29)
3         34.5        30.0
4  28.0 - 36.0 28.0 - 38.0
5      23 - 36     28 - 38
6   1 ( 25.0%)  1 ( 33.3%)
7   3 ( 75.0%)  2 ( 66.7%)
8   0 (  0.0%)  0 (  0.0%)
9   2 ( 50.0%)  1 ( 33.3%)
10  2 ( 50.0%)  2 ( 66.7%)
11  3 ( 75.0%)  2 ( 66.7%)
12  1 ( 25.0%)  1 ( 33.3%)
=========================================================================
Create and print report
=========================================================================
Write out the report
# A report specification: 1 pages
- file_path: 'C:\Users\dbosa\AppData\Local\Temp\RtmpAXQUo8/ProcsDemoDM.rtf'
- output_type: RTF
- units: inches
- orientation: landscape
- margins: top 1 bottom 1 left 1 right 1
- line size/count: 9/36
- page_header: left=Sponsor: Company right=Study: ABC
- page_footer: left=Date Produced: 2024-05-28 center= right=Page [pg] of [tpg]
- content: 
# A table specification:
- data: data.frame 'final' 12 rows 6 cols
- show_cols: all
- use_attributes: all
- title 1: 'Table 1.0'
- title 2: 'Analysis of Demographic Characteristics'
- title 3: 'Safety Population'
- footnote 1: 'Program: DM_Table.R'
- footnote 2: 'NOTE: Denominator based on number of non-missing responses.'
- stub: VAR LABEL 'Variable' width=2.5 align='left' 
- define: VAR 'Variable' dedupe='TRUE' 
- define: LABEL 'Demographic Category' 
- define: ARM A 'Placebo' 
- define: ARM B 'Drug 50mg' 
- define: ARM C 'Drug 100mg' 
- define: ARM D 'Competitor' 
=========================================================================
Clean Up
=========================================================================
Close log
=========================================================================
Log End Time: 2024-05-28 09:09:22.306942
Log Elapsed Time: 0 00:00:00
=========================================================================