Version: | 1.3-0 |
Date: | 2020-03-16 |
Title: | Basic Functions for Power Analysis |
Description: | Power analysis functions along the lines of Cohen (1988). |
Imports: | stats, graphics |
Suggests: | ggplot2, scales, knitr, rmarkdown |
License: | GPL (≥ 3) |
URL: | https://github.com/heliosdrm/pwr |
VignetteBuilder: | knitr |
RoxygenNote: | 7.1.0 |
NeedsCompilation: | no |
Packaged: | 2020-03-16 22:50:22 UTC; meliana |
Author: | Stephane Champely [aut], Claus Ekstrom [ctb], Peter Dalgaard [ctb], Jeffrey Gill [ctb], Stephan Weibelzahl [ctb], Aditya Anandkumar [ctb], Clay Ford [ctb], Robert Volcic [ctb], Helios De Rosario [cre] |
Maintainer: | Helios De Rosario <helios.derosario@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2020-03-17 12:10:02 UTC |
Basic Functions for Power Analysis pwr
Description
Power calculations along the lines of Cohen (1988) using in particular the same notations for effect sizes. Examples from the book are given.
Details
Package: | pwr |
Type: | Package |
Version: | 1.3-0 |
Date: | 2020-03-16 |
License: | GPL (>= 3) |
This package contains functions for basic power calculations using effect sizes and notations from Cohen (1988) : pwr.p.test: test for one proportion (ES=h) pwr.2p.test: test for two proportions (ES=h) pwr.2p2n.test: test for two proportions (ES=h, unequal sample sizes) pwr.t.test: one sample and two samples (equal sizes) t tests for means (ES=d) pwr.t2n.test: two samples (different sizes) t test for means (ES=d) pwr.anova.test: test for one-way balanced anova (ES=f) pwr.r.test: correlation test (ES=r) pwr.chisq.test: chi-squared test (ES=w) pwr.f2.test: test for the general linear model (ES=f2) ES.h: computing effect size h for proportions tests ES.w1: computing effect size w for the goodness of fit chi-squared test ES.w2: computing effect size w for the association chi-squared test cohen.ES: computing effect sizes for all the previous tests corresponding to conventional effect sizes (small, medium, large)
Author(s)
Stephane Champely, based on previous works by Claus Ekstrom and Peter Dalgaard, with contributions of Jeffrey Gill, Stephan Weibelzahl, Clay Ford, Aditya Anandkumar and Robert Volcic.
Maintainer: Helios De Rosario-Martinez <helios.derosario@gmail.com>
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
See Also
power.t.test,power.prop.test,power.anova.test
Examples
## Exercise 8.1 P. 357 from Cohen (1988)
pwr.anova.test(f=0.28,k=4,n=20,sig.level=0.05)
## Exercise 6.1 p. 198 from Cohen (1988)
pwr.2p.test(h=0.3,n=80,sig.level=0.05,alternative="greater")
## Exercise 7.3 p. 251
pwr.chisq.test(w=0.346,df=(2-1)*(3-1),N=140,sig.level=0.01)
## Exercise 6.5 p. 203 from Cohen (1988)
pwr.p.test(h=0.2,n=60,sig.level=0.05,alternative="two.sided")
Effect size calculation for proportions
Description
Compute effect size h for two proportions
Usage
ES.h(p1, p2)
Arguments
p1 |
First proportion |
p2 |
Second proportion |
Details
The effect size is 2*asin(sqrt(p1))-2*asin(sqrt(p2))
Value
The corresponding effect size
Author(s)
Stephane CHAMPELY
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
See Also
pwr.p.test, pwr.2p.test, pwr.2p2n.test, power.prop.test
Examples
## Exercise 6.5 p. 203 from Cohen
h<-ES.h(0.5,0.4)
h
pwr.p.test(h=h,n=60,sig.level=0.05,alternative="two.sided")
Effect size calculation in the chi-squared test for goodness of fit
Description
Compute effect size w for two sets of k probabilities P0 (null hypothesis) and P1 (alternative hypothesis)
Usage
ES.w1(P0, P1)
Arguments
P0 |
First set of k probabilities (null hypothesis) |
P1 |
Second set of k probabilities (alternative hypothesis) |
Value
The corresponding effect size w
Author(s)
Stephane CHAMPELY
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
See Also
pwr.chisq.test
Examples
## Exercise 7.1 p. 249 from Cohen
P0<-rep(1/4,4)
P1<-c(0.375,rep((1-0.375)/3,3))
ES.w1(P0,P1)
pwr.chisq.test(w=ES.w1(P0,P1),N=100,df=(4-1))
Effect size calculation in the chi-squared test for association
Description
Compute effect size w for a two-way probability table corresponding to the alternative hypothesis in the chi-squared test of association in two-way contingency tables
Usage
ES.w2(P)
Arguments
P |
A two-way probability table (alternative hypothesis) |
Value
The corresponding effect size w
Author(s)
Stephane CHAMPELY
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
See Also
pwr.chisq.test
Examples
prob<-matrix(c(0.225,0.125,0.125,0.125,0.16,0.16,0.04,0.04),nrow=2,byrow=TRUE)
prob
ES.w2(prob)
pwr.chisq.test(w=ES.w2(prob),df=(2-1)*(4-1),N=200)
Conventional effects size
Description
Give the conventional effect size (small, medium, large) for the tests available in this package
Usage
cohen.ES(test = c("p", "t", "r", "anov", "chisq", "f2"),
size = c("small", "medium", "large"))
Arguments
test |
The statistical test of interest |
size |
The ES : small, medium of large? |
Value
The corresponding effect size
Author(s)
Stephane CHAMPELY
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
Examples
## medium effect size for the correlation test
cohen.ES(test="r", size="medium")
## sample size for a medium size effect in the two-sided correlation test
## using the conventional power of 0.80
pwr.r.test(r=cohen.ES(test="r",size="medium")$effect.size,
power=0.80, sig.level=0.05, alternative="two.sided")
Plot diagram of sample size vs. test power
Description
Plot a diagram to illustrate the relationship of sample size and test power for a given set of parameters.
Usage
## S3 method for class 'power.htest'
plot(x, ...)
Arguments
x |
object of class power.htest usually created by one of the power calculation functions, e.g., pwr.t.test() |
... |
Arguments to be passed to |
Details
Power calculations for the following tests are supported: t-test (pwr.t.test(), pwr.t2n.test()), chi squared test (pwr.chisq.test()), one-way ANOVA (pwr.anova.test(), standard normal distribution (pwr.norm.test()), Pearson correlation (pwr.r.test()), proportions (pwr.p.test(), pwr.2p.test(), pwr.2p2n.test()))
Value
These functions are invoked for their side effect of drawing on the active graphics device.
Note
By default it attempts to use the plotting tools of ggplot2 and scales. If they are not installed, it will use the basic R plotting tools.
Author(s)
Stephan Weibelzahl <weibelzahl@pfh.de>
See Also
pwr.t.test
, pwr.p.test
, pwr.2p.test
,
pwr.2p2n.test
, pwr.r.test
, pwr.chisq.test
,
pwr.anova.test
, pwr.t2n.test
Examples
## Two-sample t-test
p.t.two <- pwr.t.test(d=0.3, power=0.8, type="two.sample", alternative="two.sided")
plot(p.t.two)
plot(p.t.two, xlab="sample size per group")
Power calculation for two proportions (same sample sizes)
Description
Compute power of test, or determine parameters to obtain target power (similar to power.prop.test).
Usage
pwr.2p.test(h = NULL, n = NULL, sig.level = 0.05, power = NULL,
alternative = c("two.sided","less","greater"))
Arguments
h |
Effect size |
n |
Number of observations (per sample) |
sig.level |
Significance level (Type I error probability) |
power |
Power of test (1 minus Type II error probability) |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less" |
Details
Exactly one of the parameters 'h','n', 'power' and 'sig.level' must be passed as NULL, and that parameter is determined from the others. Notice that the last one has non-NULL default so NULL must be explicitly passed if you want to compute it.
Value
Object of class '"power.htest"', a list of the arguments (including the computed one) augmented with 'method' and 'note' elements.
Note
'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.
Author(s)
Stephane Champely <champely@univ-lyon1.fr> but this is a mere copy of Peter Dalgaard work (power.t.test)
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
See Also
ES.h, pwr.2p2n.test, power.prop.test
Examples
## Exercise 6.1 p. 198 from Cohen (1988)
pwr.2p.test(h=0.3,n=80,sig.level=0.05,alternative="greater")
Power calculation for two proportions (different sample sizes)
Description
Compute power of test, or determine parameters to obtain target power.
Usage
pwr.2p2n.test(h = NULL, n1 = NULL, n2 = NULL, sig.level = 0.05, power = NULL,
alternative = c("two.sided", "less","greater"))
Arguments
h |
Effect size |
n1 |
Number of observations in the first sample |
n2 |
Number of observations in the second sample |
sig.level |
Significance level (Type I error probability) |
power |
Power of test (1 minus Type II error probability) |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less" |
Details
Exactly one of the parameters 'h','n1', 'n2', 'power' and 'sig.level' must be passed as NULL, and that parameter is determined from the others. Notice that the last one has non-NULL default so NULL must be explicitly passed if you want to compute it.
Value
Object of class '"power.htest"', a list of the arguments (including the computed one) augmented with 'method' and 'note' elements.
Note
'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.
Author(s)
Stephane Champely <champely@univ-lyon1.fr> but this is a mere copy of Peter Dalgaard work (power.t.test)
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
See Also
ES.h, pwr.2p.test, power.prop.test
Examples
## Exercise 6.3 P. 200 from Cohen (1988)
pwr.2p2n.test(h=0.30,n1=80,n2=245,sig.level=0.05,alternative="greater")
## Exercise 6.7 p. 207 from Cohen (1988)
pwr.2p2n.test(h=0.20,n1=1600,power=0.9,sig.level=0.01,alternative="two.sided")
Power calculations for balanced one-way analysis of variance tests
Description
Compute power of test or determine parameters to obtain target power (same as power.anova.test).
Usage
pwr.anova.test(k = NULL, n = NULL, f = NULL, sig.level = 0.05, power = NULL)
Arguments
k |
Number of groups |
n |
Number of observations (per group) |
f |
Effect size |
sig.level |
Significance level (Type I error probability) |
power |
Power of test (1 minus Type II error probability) |
Details
Exactly one of the parameters 'k','n','f','power' and 'sig.level' must be passed as NULL, and that parameter is determined from the others. Notice that the last one has non-NULL default so NULL must be explicitly passed if you want to compute it.
Value
Object of class '"power.htest"', a list of the arguments (including the computed one) augmented with 'method' and 'note' elements.
Note
'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.
Author(s)
Stephane Champely <champely@univ-lyon1.fr> but this is a mere copy of Peter Dalgaard work (power.t.test)
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
See Also
power.anova.test
Examples
## Exercise 8.1 P. 357 from Cohen (1988)
pwr.anova.test(f=0.28,k=4,n=20,sig.level=0.05)
## Exercise 8.10 p. 391
pwr.anova.test(f=0.28,k=4,power=0.80,sig.level=0.05)
power calculations for chi-squared tests
Description
Compute power of test or determine parameters to obtain target power (same as power.anova.test).
Usage
pwr.chisq.test(w = NULL, N = NULL, df = NULL, sig.level = 0.05, power = NULL)
Arguments
w |
Effect size |
N |
Total number of observations |
df |
degree of freedom (depends on the chosen test) |
sig.level |
Significance level (Type I error probability) |
power |
Power of test (1 minus Type II error probability) |
Details
Exactly one of the parameters 'w','N','power' and 'sig.level' must be passed as NULL, and that parameter is determined from the others. Notice that the last one has non-NULL default so NULL must be explicitly passed if you want to compute it.
Value
Object of class '"power.htest"', a list of the arguments (including the computed one) augmented with 'method' and 'note' elements.
Note
'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.
Author(s)
Stephane Champely <champely@univ-lyon1.fr> but this is a mere copy of Peter Dalgaard work (power.t.test)
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
See Also
ES.w1,ES.w2
Examples
## Exercise 7.1 P. 249 from Cohen (1988)
pwr.chisq.test(w=0.289,df=(4-1),N=100,sig.level=0.05)
## Exercise 7.3 p. 251
pwr.chisq.test(w=0.346,df=(2-1)*(3-1),N=140,sig.level=0.01)
## Exercise 7.8 p. 270
pwr.chisq.test(w=0.1,df=(5-1)*(6-1),power=0.80,sig.level=0.05)
Power calculations for the general linear model
Description
Compute power of test or determine parameters to obtain target power (same as power.anova.test).
Usage
pwr.f2.test(u = NULL, v = NULL, f2 = NULL, sig.level = 0.05, power = NULL)
Arguments
u |
degrees of freedom for numerator |
v |
degrees of freedom for denominator |
f2 |
effect size |
sig.level |
Significance level (Type I error probability) |
power |
Power of test (1 minus Type II error probability) |
Details
Exactly one of the parameters 'u','v','f2','power' and 'sig.level' must be passed as NULL, and that parameter is determined from the others. Notice that the last one has non-NULL default so NULL must be explicitly passed if you want to compute it.
Value
Object of class '"power.htest"', a list of the arguments (including the computed one) augmented with 'method' and 'note' elements.
Note
'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.
Author(s)
Stephane Champely <champely@univ-lyon1.fr> but this is a mere copy of Peter Dalgaard work (power.t.test)
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
Examples
## Exercise 9.1 P. 424 from Cohen (1988)
pwr.f2.test(u=5,v=89,f2=0.1/(1-0.1),sig.level=0.05)
Power calculations for the mean of a normal distribution (known variance)
Description
Compute power of test or determine parameters to obtain target power (same as power.anova.test).
Usage
pwr.norm.test(d = NULL, n = NULL, sig.level = 0.05, power = NULL,
alternative = c("two.sided","less","greater"))
Arguments
d |
Effect size d=mu-mu0 |
n |
Number of observations |
sig.level |
Significance level (Type I error probability) |
power |
Power of test (1 minus Type II error probability) |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less" |
Details
Exactly one of the parameters 'd','n','power' and 'sig.level' must be passed as NULL, and that parameter is determined from the others. Notice that the last one has non-NULL default so NULL must be explicitly passed if you want to compute it.
Value
Object of class '"power.htest"', a list of the arguments (including the computed one) augmented with 'method' and 'note' elements.
Note
'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.
Author(s)
Stephane Champely <champely@univ-lyon1.fr> but this is a mere copy of Peter Dalgaard work (power.t.test)
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
Examples
## Power at mu=105 for H0:mu=100 vs. H1:mu>100 (sigma=15) 20 obs. (alpha=0.05)
sigma<-15
c<-100
mu<-105
d<-(mu-c)/sigma
pwr.norm.test(d=d,n=20,sig.level=0.05,alternative="greater")
## Sample size of the test for power=0.80
pwr.norm.test(d=d,power=0.8,sig.level=0.05,alternative="greater")
## Power function of the same test
mu<-seq(95,125,l=100)
d<-(mu-c)/sigma
plot(d,pwr.norm.test(d=d,n=20,sig.level=0.05,alternative="greater")$power,
type="l",ylim=c(0,1))
abline(h=0.05)
abline(h=0.80)
## Power function for the two-sided alternative
plot(d,pwr.norm.test(d=d,n=20,sig.level=0.05,alternative="two.sided")$power,
type="l",ylim=c(0,1))
abline(h=0.05)
abline(h=0.80)
Power calculations for proportion tests (one sample)
Description
Compute power of test or determine parameters to obtain target power (same as power.anova.test).
Usage
pwr.p.test(h = NULL, n = NULL, sig.level = 0.05, power = NULL,
alternative = c("two.sided","less","greater"))
Arguments
h |
Effect size |
n |
Number of observations |
sig.level |
Significance level (Type I error probability) |
power |
Power of test (1 minus Type II error probability) |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less" |
Details
These calculations use arcsine transformation of the proportion (see Cohen (1988))
Exactly one of the parameters 'h','n','power' and 'sig.level' must be passed as NULL, and that parameter is determined from the others. Notice that the last one has non-NULL default so NULL must be explicitly passed if you want to compute it.
Value
Object of class '"power.htest"', a list of the arguments (including the computed one) augmented with 'method' and 'note' elements.
Note
'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.
Author(s)
Stephane Champely <champely@univ-lyon1.fr> but this is a mere copy of Peter Dalgaard work (power.t.test)
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
See Also
ES.h
Examples
## Exercise 6.5 p. 203 from Cohen
h<-ES.h(0.5,0.4)
h
pwr.p.test(h=h,n=60,sig.level=0.05,alternative="two.sided")
## Exercise 6.8 p. 208
pwr.p.test(h=0.2,power=0.95,sig.level=0.05,alternative="two.sided")
Power calculations for correlation test
Description
Compute power of test or determine parameters to obtain target power (same as power.anova.test).
Usage
pwr.r.test(n = NULL, r = NULL, sig.level = 0.05, power = NULL,
alternative = c("two.sided", "less","greater"))
Arguments
n |
Number of observations |
r |
Linear correlation coefficient |
sig.level |
Significance level (Type I error probability) |
power |
Power of test (1 minus Type II error probability) |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less" |
Details
These calculations use the Z' transformation of correlation coefficient : Z'=arctanh(r) and a bias correction is applied. Note that contrary to Cohen (1988) p.546, where zp' = arctanh(rp) + rp/(2*(n-1)) and zc' = arctanh(rc) + rc/(2*(n-1)), we only use here zp' = arctanh(rp) + rp/(2*(n-1)) and zc' = arctanh(rc).
Exactly one of the parameters 'r','n','power' and 'sig.level' must be passed as NULL, and that parameter is determined from the others. Notice that the last one has non-NULL default so NULL must be explicitly passed if you want to compute it.
Value
Object of class '"power.htest"', a list of the arguments (including the computed one) augmented with 'method' and 'note' elements.
Note
'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.
Author(s)
Stephane Champely <champely@univ-lyon1.fr> but this is a mere copy of Peter Dalgaard work (power.t.test). The modified bias correction is contributed by Jeffrey Gill.
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
Examples
## Exercise 3.1 p. 96 from Cohen (1988)
pwr.r.test(r=0.3,n=50,sig.level=0.05,alternative="two.sided")
pwr.r.test(r=0.3,n=50,sig.level=0.05,alternative="greater")
## Exercise 3.4 p. 208
pwr.r.test(r=0.3,power=0.80,sig.level=0.05,alternative="two.sided")
pwr.r.test(r=0.5,power=0.80,sig.level=0.05,alternative="two.sided")
pwr.r.test(r=0.1,power=0.80,sig.level=0.05,alternative="two.sided")
Power calculations for t-tests of means (one sample, two samples and paired samples)
Description
Compute power of tests or determine parameters to obtain target power (similar to power.t.test).
Usage
pwr.t.test(n = NULL, d = NULL, sig.level = 0.05, power = NULL,
type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "less", "greater"))
Arguments
n |
Number of observations (per sample) |
d |
Effect size (Cohen's d) - difference between the means divided by the pooled standard deviation |
sig.level |
Significance level (Type I error probability) |
power |
Power of test (1 minus Type II error probability) |
type |
Type of t test : one- two- or paired-samples |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less" |
Details
Exactly one of the parameters 'd','n','power' and 'sig.level' must be passed as NULL, and that parameter is determined from the others. Notice that the last one has non-NULL default so NULL must be explicitly passed if you want to compute it.
Value
Object of class '"power.htest"', a list of the arguments (including the computed one) augmented with 'method' and 'note' elements.
Note
'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.
Author(s)
Stephane Champely <champely@univ-lyon1.fr> but this is a mere copy of Peter Dalgaard work (power.t.test)
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
See Also
power.prop.test
Examples
## One sample (power)
## Exercise 2.5 p. 47 from Cohen (1988)
pwr.t.test(d=0.2,n=60,sig.level=0.10,type="one.sample",alternative="two.sided")
## Paired samples (power)
## Exercise p. 50 from Cohen (1988)
d<-8/(16*sqrt(2*(1-0.6)))
pwr.t.test(d=d,n=40,sig.level=0.05,type="paired",alternative="two.sided")
## Two independent samples (power)
## Exercise 2.1 p. 40 from Cohen (1988)
d<-2/2.8
pwr.t.test(d=d,n=30,sig.level=0.05,type="two.sample",alternative="two.sided")
## Two independent samples (sample size)
## Exercise 2.10 p. 59
pwr.t.test(d=0.3,power=0.75,sig.level=0.05,type="two.sample",alternative="greater")
Power calculations for two samples (different sizes) t-tests of means
Description
Compute power of tests or determine parameters to obtain target power (similar to as power.t.test).
Usage
pwr.t2n.test(n1 = NULL, n2= NULL, d = NULL, sig.level = 0.05, power = NULL,
alternative = c("two.sided",
"less","greater"))
Arguments
n1 |
Number of observations in the first sample |
n2 |
Number of observations in the second sample |
d |
Effect size |
sig.level |
Significance level (Type I error probability) |
power |
Power of test (1 minus Type II error probability) |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less" |
Details
Exactly one of the parameters 'd','n1','n2','power' and 'sig.level' must be passed as NULL, and that parameter is determined from the others. Notice that the last one has non-NULL default so NULL must be explicitly passed if you want to compute it.
Value
Object of class '"power.htest"', a list of the arguments (including the computed one) augmented with 'method' and 'note' elements.
Note
'uniroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.
Author(s)
Stephane Champely <champely@univ-lyon1.fr> but this is a mere copy of Peter Dalgaard work (power.t.test)
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
Examples
## Exercise 2.3 p. 437 from Cohen (1988)
pwr.t2n.test(d=0.6,n1=90,n2=60,alternative="greater")