| Type: | Package | 
| Title: | Structural Equation Modeling for the Social Relations Model | 
| Version: | 0.4-26 | 
| Date: | 2022-11-03 10:20:31 | 
| Author: | Steffen Nestler [aut], Alexander Robitzsch [aut, cre], Oliver Luedtke [aut] | 
| Maintainer: | Alexander Robitzsch <robitzsch@ipn.uni-kiel.de> | 
| Description: | Provides functionality for structural equation modeling for the social relations model (Kenny & La Voie, 1984; <doi:10.1016/S0065-2601(08)60144-6>; Warner, Kenny, & Soto, 1979, <doi:10.1037/0022-3514.37.10.1742>). Maximum likelihood estimation (Gill & Swartz, 2001, <doi:10.2307/3316080>; Nestler, 2018, <doi:10.3102/1076998617741106>) and least squares estimation is supported (Bond & Malloy, 2018, <doi:10.1016/B978-0-12-811967-9.00014-X>). | 
| Depends: | R (≥ 3.1) | 
| Imports: | Rcpp, stats, utils | 
| Enhances: | amen, TripleR | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | https://github.com/alexanderrobitzsch/srm, https://sites.google.com/site/alexanderrobitzsch2/software | 
| NeedsCompilation: | yes | 
| Packaged: | 2022-11-03 09:21:57 UTC; sunpn563 | 
| Repository: | CRAN | 
| Date/Publication: | 2022-11-03 10:00:02 UTC | 
Structural Equation Modeling for the Social Relations Model
Description
Provides functionality for structural equation modeling for the social relations model (Kenny & La Voie, 1984; <doi:10.1016/S0065-2601(08)60144-6>; Warner, Kenny, & Soto, 1979, <doi:10.1037/0022-3514.37.10.1742>). Maximum likelihood estimation (Gill & Swartz, 2001, <doi:10.2307/3316080>; Nestler, 2018, <doi:10.3102/1076998617741106>) and least squares estimation is supported (Bond & Malloy, 2018, <doi:10.1016/B978-0-12-811967-9.00014-X>).
Author(s)
Steffen Nestler [aut], Alexander Robitzsch [aut, cre], Oliver Luedtke [aut]
Maintainer: Alexander Robitzsch <robitzsch@ipn.uni-kiel.de>
References
Bond, C. F., & Malloy, T. E. (2018a). Social relations analysis of dyadic data structure: The general case. In T. E. Malloy. Social relations modeling of behavior in dyads and groups (Ch. 14). Academic Press. doi: 10.1016/B978-0-12-811967-9.00014-X
Gill, P. S., & Swartz, T. B. (2001). Statistical analyses for round robin interaction data. Canadian Journal of Statistics, 29(2), 321-331. doi: 10.2307/3316080
Kenny, D. A., & La Voie, L. J. (1984). The social relations model. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 18, pp. 142-182). Orlando, FL: Academic. doi: 10.1016/S0065-2601(08)60144-6
Nestler, S. (2018). Likelihood estimation of the multivariate social relations model. Journal of Educational and Behavioral Statistics, 43(4), 387-406. doi: 10.3102/1076998617741106
Warner, R. M., Kenny, D. A., & Soto, M. (1979). A new round robin analysis of variance for social interaction data. Journal of Personality and Social Psychology, 37(10), 1742-1757. doi: 10.1037/0022-3514.37.10.1742
See Also
See also the R packages amen and TripleR for estimating the social relations model.
Hallmark and Kenny Round Robin Data
Description
Data from Kenny et al. (1994)
Usage
data(HallmarkKenny)
Format
A data frame with 802 measurements of 30 round-robin groups on the following 7
round-robin variables (taken on unnumbered 7-point rating scales with higher numbers
indicating a higher value of the trait): 
calm: rating of dimension calm-anxious  
sociable rating of dimension sociable-withdrawn 
liking rating of dimension like-do not like  
careful rating of dimension careful-careless 
relaxed rating of dimension relaxed-tense 
talkative rating of dimension talkative-quiet 
responsible rating of dimension responsible-undependable 
The data frame also contains participants gender (actor.sex; 1 = F,
2 = M) and their age in years (actor.age).
Note that the data was assessed in two conditions: odd round robin group numbers indicate
groups in which participants rated all traits for a person at a time whereas even numbers
refer to groups in which participants rated all the people for each trait.
Source
http://davidakenny.net/srm/srmdata.htm
References
Kenny, D. A., Albright, L., Malloy, T. E., & Kashy, D. A. (1994). Consensus in interpersonal perception: Acquaintance and the big five. Psychological Bulletin, 116(2), 245-258. doi: 10.1037/0033-2909.116.2.245
Zero Acquaintance Round Robin Data from Kenny
Description
Data from Albright et al. (1988) Study 2
Usage
data(Kenzer)
Format
A data frame with 124 measurements from 7 round-robin groups on the following 5 round-robin
variables (taken on unnumbered 7-point rating scales with higher numbers indicating a
higher value of the trait): 
sociable: rating of dimension sociable 
irritable: rating of dimension good-natured 
responsible: rating of dimension responsible 
anxious: rating of dimension calm 
intellectual: rating of dimension intellectual 
The data frame also contains the gender (actor.sex; 1 = F,
2 = M) of the participants and their self-ratings on the five assessed traits
(actor.sociable and so on).
Source
http://davidakenny.net/srm/srmdata.htm
References
Albright, L., Kenny, D. A., & Malloy, T. E. (1988). Consensus in personality judgments at zero acquaintance. Journal of Personality and Social Psychology, 55(3), 387-395. doi: 10.1037/0022-3514.55.3.387
Zero Acquaintance Round Robin Data from Malloy
Description
Data from Albright et al. (1988) Study 1
Usage
data(Malzer)
Format
A data frame with 216 measurements from 12 round-robin groups on the following 5 round-robin
variables (assessed on numbered 7-point rating scales with higher numbers indicating a
higher value of the trait with the exception for good and calm): 
sociable: rating of dimension sociable 
irritable: rating of dimension good-natured 
responsible: rating of dimension responsible 
anxious: rating of dimension calm 
intellectual: rating of dimension intellectual 
The data frame also contains the gender (actor.sex; 1 = F,
2 = M) of the participants and their self-ratings on the five assessed traits
(actor.sociable and so on).
Source
http://davidakenny.net/srm/srmdata.htm
References
Albright, L., Kenny, D. A., & Malloy, T. E. (1988). Consensus in personality judgments at zero acquaintance. Journal of Personality and Social Psychology, 55(3), 387-395. doi: 10.1037/0022-3514.55.3.387
Round Robin Data Reported in Warner et al.
Description
Data from Warner et al. (1979)
Usage
data(Warner)
Format
A data frame with 56 measurements of a single round-robin group on a single round-robin
variable that was measured at three consecutive time points. The variable reflects the
proportion of time an actor spent when speaking to a partner. 
prop.T1: proportion of time spent in the first interaction 
prop.T2: proportion of time spent in the second interaction 
prop.T3: proportion of time spent in the third interaction 
Source
See Table 7 (p. 1752) of the Warner et al. (1979).
References
Warner, R. M., Kenny, D. A., & Soto, M. (1979). A new round robin analysis of variance for social interaction data. Journal of Personality and Social Psychology, 37(10), 1742-1757. doi: 10.1037/0022-3514.37.10.1742
Zero Acquaintance Round Robin Data From Albirght, Kenny, and Malloy
Description
Data from Study 3 of Albright et al. (1988)
Usage
data(Zero)
Format
A data frame with 636 measurements of 36 round robin groups on the following 15 round-robin
variables (taken on 7-point rating scales with higher values indicating more of the
trait): 
sociable: rating of dimension sociable-reclusive 
good: rating of dimension good-natured-irritable 
responsible: rating of dimension responsible-undependable 
calm: rating of dimension calm-anxious 
intellectual: rating of dimension intellectual-unintellectual 
imaginative: rating of dimension imaginative-unimaginative 
talkative: rating of dimension talkative-silent 
fussy: rating of dimension fussy-careless 
composed: rating of dimension composed-excitable 
cooperative: rating of dimension cooperative-negativistic 
physically_attractive: rating of dimension physically attractive-unattractive 
formal_dress: rating of dimension formal dress-casual dress 
neatly_dressed: rating of dimension neatly dressed-sloppy dress 
athletic: rating of dimension athletic-not athletic 
young: rating of dimension young-old 
The data frame also contains the gender (actor.sex; 1 = F,
2 = M) of the participants and their self-ratings on the five assessed traits
(actor.sociable and so on).
Source
http://davidakenny.net/srm/srmdata.htm
References
Albright, L., Kenny, D. A., & Malloy, T. E. (1988). Consensus in personality judgments at zero acquaintance. Journal of Personality and Social Psychology, 55(3), 387-395. doi: 10.1037/0022-3514.55.3.387
Dataset Back et al. (2011)
Description
Dataset used in Back, Schmukle and Egloff (2011).
Usage
data(data.back)
Format
- The dataset - data.backis a round-robin desiogn with 54 units and has the following structure- 'data.frame': 2862 obs. of 8 variables:
 - $ Group : num 1 1 1 1 1 1 1 1 1 1 ...
 - $ Actor : int 1 1 1 1 1 1 1 1 1 1 ...
 - $ Partner: int 2 3 4 5 6 7 8 9 10 11 ...
 - $ Dyad : int 1 2 3 4 5 6 7 8 9 10 ...
 - $ y : int 3 3 2 2 4 3 3 2 3 3 ...
 - $ sex : int 1 1 1 1 1 1 1 1 1 1 ...
 - $ age : int 22 22 22 22 22 22 22 22 22 22 ...
 - $ n : num -1.17 -1.17 -1.17 -1.17 -1.17 -1.17 -1.17 -1.17 -1.17 -1.17 ...
 
Source
References
Back, M. D., Schmukle, S. C., & Egloff, B. (2011). A closer look at first sight: Social relations lens model analysis of personality and interpersonal attraction at zero acquaintance. European Journal of Personality, 25(3), 225-238. doi: 10.1002/per.790
Dataset Bond and Malloy (2018)
Description
This is the illustration dataset of Bond and Malloy (2018) for a bivariate social relations model. The round robin design contains 16 persons and some missing values for one person.
Usage
data(data.bm1)
data(data.bm2)
Format
- The dataset - data.bm1contains all ratings in a wide format. The two outcomes are arranged one below the other.- 'data.frame': 32 obs. of 16 variables:
 - $ a: int NA 12 13 14 15 15 14 14 13 13 ...
 - $ b: int 10 NA 10 18 7 15 14 8 12 12 ...
 - $ c: int 13 12 NA 14 13 14 13 13 11 12 ...
 - [...]
 - $ p: int 11 13 14 14 9 8 17 13 11 12 ...
 
- The dataset - data.bm2is a subdataset of- data.bm1which contains observations 9 to 16.
Source
http://thomasemalloy.org/arbsrm-the-general-social-relations-model/
References
Bond, C. F., & Malloy, T. E. (2018a). Social relations analysis of dyadic data structure: The general case. In T. E. Malloy. Social relations modeling of behavior in dyads and groups (Ch. 14). Academic Press. doi: 10.1016/B978-0-12-811967-9.00014-X
Example Datasets for the srm Package
Description
Some simulated example datasets for the srm package.
Usage
data(data.srm01)
Format
- The dataset - data.srm01contains three variables, 10 round robin groups with 10 members each.- 'data.frame': 900 obs. of 7 variables:
 - $ Group : num 1 1 1 1 1 1 1 1 1 1 ...
 - $ dyad : num 1 2 3 4 5 6 7 8 9 10 ...
 - $ Actor : num 1 1 1 1 1 1 1 1 1 2 ...
 - $ Partner: num 2 3 4 5 6 7 8 9 10 3 ...
 - $ Wert1 : num -0.15 -0.95 0.82 1.15 -1.79 1.17 1.79 -0.57 -0.46 1.19 ...
 - $ Wert2 : num -0.77 0.17 0.42 0.16 -0.44 0.89 1.67 -1.9 -0.74 2.67 ...
 - $ Wert3 : num -0.49 0.08 -0.12 1.16 -2.78 -0.74 2.66 -1.28 -0.45 1.93 ...
 
Structural Equation Model for the Social Relations Model
Description
Provides an estimation routine for a multiple group structural equation model for the social relations model (SRM; Kenny & La Voie, 1984; Warner, Kenny, & Soto, 1979). The model is estimated by maximum likelihood (Gill & Swartz, 2001; Nestler, 2018).
Usage
srm(model.syntax = NULL, data = NULL, group.var = NULL, rrgroup_name = NULL,
  person_names = c("Actor", "Partner"), fixed.groups = FALSE, var_positive = -1,
  optimizer = "srm", maxiter = 300, conv_dev = 1e-08, conv_par = 1e-06,
  do_line_search = TRUE, line_search_iter_max = 6, verbose = TRUE, use_rcpp = TRUE,
  shortcut = TRUE, use_woodbury = TRUE)
## S3 method for class 'srm'
coef(object, ...)
## S3 method for class 'srm'
vcov(object, ...)
## S3 method for class 'srm'
summary(object, digits=3, file=NULL, layout=1, ...)
## S3 method for class 'srm'
logLik(object, ...)
Arguments
| model.syntax | Syntax similar to lavaan language, see Examples. | 
| data | Data frame containing round robin identifier variables and variables in the round robin design | 
| group.var | Name of grouping variable | 
| rrgroup_name | Name of variable indicating round robin group | 
| person_names | Names for identifier variables for actors and partners | 
| fixed.groups | Logical indicating whether groups should be handled with fixed effects | 
| var_positive | Nonnegative value if variances are constrained to be positive | 
| optimizer | Optimizer to be used:  | 
| maxiter | Maximum number of iterations | 
| conv_dev | Convergence criterion for change relative deviance | 
| conv_par | Convergence criterion for change in parameters | 
| do_line_search | Logical indicating whether line search should be performed | 
| line_search_iter_max | Number of iterations during line search algorithm | 
| verbose | Logical indicating whether convergence progress should be displayed | 
| use_rcpp | Logical indicating whether Rcpp package should be used | 
| shortcut | Logical indicating whether shortcuts for round robin groups with same structure should be used | 
| use_woodbury | Logical indicating whether matrix inversion should be simplified by Woodbury identity | 
| object | Object of class  | 
| file | Optional file name for summary output | 
| digits | Number of digits after decimal in summary output | 
| layout | Different layouts ( | 
| ... | Further arguments to be passed | 
Value
List with following entries (selection)
| parm.table | Parameter table with estimated values | 
| coef | Vector of parameter estimates | 
| vcov | Covariance matrix of parameter estimates | 
| parm_list | List of model matrices | 
| sigma | Model implied covariance matrices | 
| ... | Further values | 
References
Gill, P. S., & Swartz, T. B. (2001). Statistical analyses for round robin interaction data. Canadian Journal of Statistics, 29(2), 321-331. doi: 10.2307/3316080
Kenny, D. A., & La Voie, L. J. (1984). The social relations model. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 18, pp. 142-182). Orlando, FL: Academic. doi: 10.1016/S0065-2601(08)60144-6
Nestler, S. (2018). Likelihood estimation of the multivariate social relations model. Journal of Educational and Behavioral Statistics, 43(4), 387-406. doi: 10.3102/1076998617741106
Warner, R. M., Kenny, D. A., & Soto, M. (1979). A new round robin analysis of variance for social interaction data. Journal of Personality and Social Psychology, 37(10), 1742-1757. doi: 10.1037/0022-3514.37.10.1742
See Also
See also TripleR and amen packages for alternative estimation routines for the SRM.
Examples
#############################################################################
# EXAMPLE 1: Univariate SRM
#############################################################################
data(data.srm01, package="srm")
dat <- data.srm01
#-- define model
mf <- '
%Person
F1@A =~ 1*Wert1@A
F1@P =~ 1*Wert1@P
Wert1@A ~~ 0*Wert1@A + 0*Wert1@P
Wert1@P ~~ 0*Wert1@P
%Dyad
F1@AP =~ 1*Wert1@AP
F1@PA =~ 1*Wert1@PA
Wert1@AP ~~ 0*Wert1@AP + 0*Wert1@PA
Wert1@PA ~~ 0*Wert1@PA
'
#-- estimate model
mod1 <- srm::srm(mf, data = dat, rrgroup_name="Group", conv_par=1e-4, maxiter=20)
summary(mod1)
round(coef(mod1),3)
#############################################################################
# EXAMPLE 2: Bivariate SRM
#############################################################################
data(data.srm01, package="srm")
dat <- data.srm01
#-- define model
mf <- '
%Person
F1@A =~ 1*Wert1@A
F1@P =~ 1*Wert1@P
F2@A =~ 1*Wert2@A
F2@P =~ 1*Wert2@P
Wert1@A ~~ 0*Wert1@A + 0*Wert1@P
Wert1@P ~~ 0*Wert1@P
Wert2@A ~~ 0*Wert2@A + 0*Wert2@P
Wert2@P ~~ 0*Wert2@P
%Dyad
F1@AP =~ 1*Wert1@AP
F1@PA =~ 1*Wert1@PA
F2@AP =~ 1*Wert2@AP
F2@PA =~ 1*Wert2@PA
Wert1@AP ~~ 0*Wert1@AP + 0*Wert1@PA
Wert1@PA ~~ 0*Wert1@PA
Wert2@AP ~~ 0*Wert2@AP + 0*Wert2@PA
Wert2@PA ~~ 0*Wert2@PA
'
#-- estimate model
mod1 <- srm::srm(mf, data = dat, rrgroup_name="Group", conv_par=1e-4, maxiter=20)
summary(mod1)
#############################################################################
# EXAMPLE 3: One-factor model
#############################################################################
data(data.srm01, package="srm")
dat <- data.srm01
#-- define model
mf <- '
# definition of factor for persons and dyad
%Person
f1@A=~Wert1@A+Wert2@A+Wert3@A
f1@P=~Wert1@P+Wert2@P+Wert3@P
%Dyad
f1@AP=~Wert1@AP+Wert2@AP+Wert3@AP
# define some constraints
Wert1@AP ~~ 0*Wert1@PA
Wert3@AP ~~ 0*Wert3@PA
'
#-- estimate model
mod1 <- srm::srm(mf, data = dat, rrgroup_name="Group", conv_par=1e-4)
summary(mod1)
coef(mod1)
#- use stats::nlminb() optimizer
mod1 <- srm::srm(mf, data = dat, rrgroup_name="Group", optimizer="nlminb", conv_par=1e-4)
summary(mod1)
Least Squares Estimation of the Social Relations Model (Bond & Malloy, 2018)
Description
Provides least squares estimation of the bivariate social relations model with missing completely at random data (Bond & Malloy, 2018a). The code is basically taken from Bond and Malloy (2018b) and rewritten for reasons of computation time reduction.
Usage
srm_arbsrm(data, serror = TRUE, use_srm = TRUE)
## S3 method for class 'srm_arbsrm'
coef(object, ...)
## S3 method for class 'srm_arbsrm'
summary(object, digits=3, file=NULL, ...)
Arguments
| data | Rectangular dataset currently containing only one round robin group.
Bivariate observations are stacked one below the other (see
example dataset  | 
| serror | Logical indicating whether standard errors should be calculated. | 
| use_srm | Logical indicating whether the rewritten code ( | 
| object | Object of class  | 
| file | Optional file name for summary output | 
| digits | Number of digits after decimal in summary output | 
| ... | Further arguments to be passed | 
Value
List containing entries
| par_summary | Parameter summary table | 
| est | Estimated parameters (as in Bond & Malloy, 2018b) | 
| se | Estimated standard errors (as in Bond & Malloy, 2018b) | 
Note
If you use this function, please also cite Bond and Malloy (2018a).
Author(s)
Rewritten code of Bond and Malloy (2018b). See http://thomasemalloy.org/arbsrm-the-general-social-relations-model/ and http://thomasemalloy.org/wp-content/uploads/2017/09/arbcodeR.pdf.
References
Bond, C. F., & Malloy, T. E. (2018a). Social relations analysis of dyadic data structure: The general case. In T. E. Malloy. Social relations modeling of behavior in dyads and groups (Ch. 14). Academic Press. doi: 10.1016/B978-0-12-811967-9.00014-X
Bond, C. F., & Malloy, T. E. (2018b). ARBSRM - The general social relations model. http://thomasemalloy.org/arbsrm-the-general-social-relations-model/.
See Also
Without missing data, ANOVA estimation can be conducted with the TripleR package.
Examples
#############################################################################
# EXAMPLE 1: Bond and Malloy (2018) illustration dataset
#############################################################################
data(data.bm2, package="srm")
dat <- data.bm2
#- estimation
mod1 <- srm::srm_arbsrm(dat)
mod1$par_summary
coef(mod1)
summary(mod1)
#-- estimation with original Bond and Malloy code
mod1a <- srm::srm_arbsrm(dat, use_srm=FALSE)
summary(mod1a)