sstvars: Toolkit for Reduced Form and Structural Smooth Transition Vector
Autoregressive Models
Penalized and non-penalized maximum likelihood estimation of smooth
  transition vector autoregressive models with various types of transition weight
  functions, conditional distributions, and identification methods. Constrained
  estimation with various types of constraints is available. Residual based
  model diagnostics, forecasting, simulations, counterfactual analysis, and
  computation of impulse response functions, generalized impulse response functions,
  generalized forecast error variance decompositions, as well as historical
  decompositions. See
  Heather Anderson, Farshid Vahid (1998) <doi:10.1016/S0304-4076(97)00076-6>,
  Helmut Lütkepohl, Aleksei Netšunajev (2017) <doi:10.1016/j.jedc.2017.09.001>,
  Markku Lanne, Savi Virolainen (2025) <doi:10.1016/j.jedc.2025.105162>,
  Savi Virolainen (2025) <doi:10.48550/arXiv.2404.19707>.
| Version: | 1.2.2 | 
| Depends: | R (≥ 4.0.0) | 
| Imports: | Rcpp (≥ 1.0.0), RcppArmadillo (≥ 0.12.0.0.0), parallel (≥
4.0.0), pbapply (≥ 1.7-0), stats (≥ 4.0.0), graphics (≥
4.0.0), utils (≥ 4.0.0) | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| Suggests: | knitr, rmarkdown | 
| Published: | 2025-09-15 | 
| DOI: | 10.32614/CRAN.package.sstvars | 
| Author: | Savi Virolainen  [aut, cre] | 
| Maintainer: | Savi Virolainen  <savi.virolainen at helsinki.fi> | 
| BugReports: | https://github.com/saviviro/sstvars/issues | 
| License: | GPL-3 | 
| URL: | https://github.com/saviviro/sstvars | 
| NeedsCompilation: | yes | 
| SystemRequirements: | BLAS, LAPACK | 
| Materials: | README, NEWS | 
| In views: | Econometrics, TimeSeries | 
| CRAN checks: | sstvars results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=sstvars
to link to this page.