| Title: | Create Publication Quality Tables and Plots | 
| Version: | 1.0.0 | 
| Description: | Create publication quality plots and tables for Item Response Theory and Classical Test theory based item analysis, exploratory and confirmatory factor analysis. | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.2.3 | 
| BugReports: | https://github.com/masiraji/tabledown/issues | 
| Language: | en-US | 
| Depends: | R (≥ 2.10) | 
| Imports: | psych, MOTE, stats, dplyr, tibble, magrittr, data.table, tidyselect, lavaan, mirt, ggplot2, plotly, kutils, tidyr | 
| Suggests: | rmarkdown, knitr, markdown, spelling, testthat (≥ 3.0.0) | 
| URL: | https://masiraji.github.io/tabledown/ | 
| NeedsCompilation: | no | 
| Packaged: | 2024-05-02 13:27:14 UTC; mushfiqulanwarsiraji | 
| Author: | Mushfiqul Anwar Siraji | 
| Maintainer: | Mushfiqul Anwar Siraji <siraji1993@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2024-05-02 13:40:03 UTC | 
Pipe operator
Description
See magrittr::%>% for details.
Usage
lhs %>% rhs
Arguments
| lhs | A value or the magrittr placeholder. | 
| rhs | A function call using the magrittr semantics. | 
Value
The result of calling rhs(lhs).
Structural Validity data of FFMQ
Description
This is the structural validation data of Bangla Five Facet Mindfulness Questionnaire
Usage
FFMQ.CFA
Format
A data frame with 277 rows and 47 variables:
- ID
- double COLUMN_DESCRIPTION 
- Gender
- character COLUMN_DESCRIPTION 
- Education
- character COLUMN_DESCRIPTION 
- Education Years
- double COLUMN_DESCRIPTION 
- Income
- double COLUMN_DESCRIPTION 
- Profession
- character COLUMN_DESCRIPTION 
- Marital Status
- character COLUMN_DESCRIPTION 
- Social_status
- double COLUMN_DESCRIPTION 
- item1
- double COLUMN_DESCRIPTION 
- item2
- double COLUMN_DESCRIPTION 
- Ritem3
- double COLUMN_DESCRIPTION 
- item4
- double COLUMN_DESCRIPTION 
- Ritem5
- double COLUMN_DESCRIPTION 
- item6
- double COLUMN_DESCRIPTION 
- item7
- double COLUMN_DESCRIPTION 
- Ritem8
- double COLUMN_DESCRIPTION 
- item9
- double COLUMN_DESCRIPTION 
- Ritem10
- double COLUMN_DESCRIPTION 
- item11
- double COLUMN_DESCRIPTION 
- Ritem12
- double COLUMN_DESCRIPTION 
- Ritem13
- double COLUMN_DESCRIPTION 
- Ritem14
- double COLUMN_DESCRIPTION 
- item15
- double COLUMN_DESCRIPTION 
- Ritem16
- double COLUMN_DESCRIPTION 
- Ritem17
- double COLUMN_DESCRIPTION 
- Ritem18
- double COLUMN_DESCRIPTION 
- item19
- double COLUMN_DESCRIPTION 
- item20
- double COLUMN_DESCRIPTION 
- item21
- double COLUMN_DESCRIPTION 
- Ritem22
- double COLUMN_DESCRIPTION 
- Ritem23
- double COLUMN_DESCRIPTION 
- item24
- double COLUMN_DESCRIPTION 
- Ritem25
- double COLUMN_DESCRIPTION 
- item26
- double COLUMN_DESCRIPTION 
- item27
- double COLUMN_DESCRIPTION 
- Ritem28
- double COLUMN_DESCRIPTION 
- item29
- double COLUMN_DESCRIPTION 
- Ritem30
- double COLUMN_DESCRIPTION 
- item31
- double COLUMN_DESCRIPTION 
- item32
- double COLUMN_DESCRIPTION 
- item33
- double COLUMN_DESCRIPTION 
- Ritem34
- double COLUMN_DESCRIPTION 
- Ritem35
- double COLUMN_DESCRIPTION 
- item36
- double COLUMN_DESCRIPTION 
- item37
- double COLUMN_DESCRIPTION 
- Ritem38
- double COLUMN_DESCRIPTION 
- Ritem39
- double COLUMN_DESCRIPTION 
Source
https://github.com/masiraji/tabledown/tree/main/data-raw
Correlational based Valididity evidence of FFMQ
Description
Correlational based Valididity evidence of Bangla FFMQ
Usage
FFMQ.Val
Format
A data frame with 255 rows and 106 variables:
- id
- double COLUMN_DESCRIPTION 
- Age
- double COLUMN_DESCRIPTION 
- Gender
- double COLUMN_DESCRIPTION 
- Education Years
- double COLUMN_DESCRIPTION 
- Profession
- character COLUMN_DESCRIPTION 
- Marital Status
- character COLUMN_DESCRIPTION 
- Social_Status
- double COLUMN_DESCRIPTION 
- item1
- double COLUMN_DESCRIPTION 
- item2
- double COLUMN_DESCRIPTION 
- Ritem3
- double COLUMN_DESCRIPTION 
- item4
- double COLUMN_DESCRIPTION 
- Ritem5
- double COLUMN_DESCRIPTION 
- item6
- double COLUMN_DESCRIPTION 
- item7
- double COLUMN_DESCRIPTION 
- Ritem8
- double COLUMN_DESCRIPTION 
- item9
- double COLUMN_DESCRIPTION 
- Ritem10
- double COLUMN_DESCRIPTION 
- item11
- double COLUMN_DESCRIPTION 
- Ritem12
- double COLUMN_DESCRIPTION 
- Ritem13
- double COLUMN_DESCRIPTION 
- Ritem14
- double COLUMN_DESCRIPTION 
- item15
- double COLUMN_DESCRIPTION 
- Ritem16
- double COLUMN_DESCRIPTION 
- Ritem17
- double COLUMN_DESCRIPTION 
- Ritem18
- double COLUMN_DESCRIPTION 
- item19
- double COLUMN_DESCRIPTION 
- item20
- double COLUMN_DESCRIPTION 
- item21
- double COLUMN_DESCRIPTION 
- Ritem22
- double COLUMN_DESCRIPTION 
- Ritem23
- double COLUMN_DESCRIPTION 
- item24
- double COLUMN_DESCRIPTION 
- Ritem25
- double COLUMN_DESCRIPTION 
- item26
- double COLUMN_DESCRIPTION 
- item27
- double COLUMN_DESCRIPTION 
- Ritem28
- double COLUMN_DESCRIPTION 
- item29
- double COLUMN_DESCRIPTION 
- Ritem30
- double COLUMN_DESCRIPTION 
- item31
- double COLUMN_DESCRIPTION 
- item32
- double COLUMN_DESCRIPTION 
- item33
- double COLUMN_DESCRIPTION 
- Ritem34
- double COLUMN_DESCRIPTION 
- Ritem35
- double COLUMN_DESCRIPTION 
- item36
- double COLUMN_DESCRIPTION 
- item37
- double COLUMN_DESCRIPTION 
- Ritem38
- double COLUMN_DESCRIPTION 
- Ritem39
- double COLUMN_DESCRIPTION 
- EI1
- character COLUMN_DESCRIPTION 
- EI2
- character COLUMN_DESCRIPTION 
- EI3
- character COLUMN_DESCRIPTION 
- EI4
- character COLUMN_DESCRIPTION 
- EI5
- character COLUMN_DESCRIPTION 
- EI6
- character COLUMN_DESCRIPTION 
- EI7
- character COLUMN_DESCRIPTION 
- EI8
- character COLUMN_DESCRIPTION 
- EI9
- character COLUMN_DESCRIPTION 
- EI10
- character COLUMN_DESCRIPTION 
- EI11
- character COLUMN_DESCRIPTION 
- EI12
- character COLUMN_DESCRIPTION 
- EI13
- character COLUMN_DESCRIPTION 
- EI14
- character COLUMN_DESCRIPTION 
- EI15
- character COLUMN_DESCRIPTION 
- EI16
- character COLUMN_DESCRIPTION 
- EI17
- character COLUMN_DESCRIPTION 
- EI18
- character COLUMN_DESCRIPTION 
- EI19
- character COLUMN_DESCRIPTION 
- EI20
- character COLUMN_DESCRIPTION 
- EI21
- character COLUMN_DESCRIPTION 
- EI22
- character COLUMN_DESCRIPTION 
- EI23
- character COLUMN_DESCRIPTION 
- EI24
- character COLUMN_DESCRIPTION 
- EI25
- character COLUMN_DESCRIPTION 
- EI26
- character COLUMN_DESCRIPTION 
- EI27
- character COLUMN_DESCRIPTION 
- EI28
- character COLUMN_DESCRIPTION 
- EI29
- character COLUMN_DESCRIPTION 
- EI30
- character COLUMN_DESCRIPTION 
- EI31
- character COLUMN_DESCRIPTION 
- EI32
- character COLUMN_DESCRIPTION 
- EI33
- character COLUMN_DESCRIPTION 
- EI34
- character COLUMN_DESCRIPTION 
- O1
- character COLUMN_DESCRIPTION 
- O2
- character COLUMN_DESCRIPTION 
- O3
- character COLUMN_DESCRIPTION 
- O4
- character COLUMN_DESCRIPTION 
- O5
- character COLUMN_DESCRIPTION 
- O6
- character COLUMN_DESCRIPTION 
- O7
- character COLUMN_DESCRIPTION 
- O8
- character COLUMN_DESCRIPTION 
- O9
- character COLUMN_DESCRIPTION 
- O10
- character COLUMN_DESCRIPTION 
- E1
- character COLUMN_DESCRIPTION 
- E2
- character COLUMN_DESCRIPTION 
- E3
- character COLUMN_DESCRIPTION 
- E4
- character COLUMN_DESCRIPTION 
- E5
- character COLUMN_DESCRIPTION 
- E6
- character COLUMN_DESCRIPTION 
- E7
- character COLUMN_DESCRIPTION 
- E8
- character COLUMN_DESCRIPTION 
- N1
- character COLUMN_DESCRIPTION 
- N2
- character COLUMN_DESCRIPTION 
- N3
- character COLUMN_DESCRIPTION 
- N4
- character COLUMN_DESCRIPTION 
- N5
- character COLUMN_DESCRIPTION 
- N6
- character COLUMN_DESCRIPTION 
- N7
- character COLUMN_DESCRIPTION 
- N8
- character COLUMN_DESCRIPTION 
Source
https://github.com/masiraji/tabledown/tree/main/data-raw
Gantt Data
Description
Demo project breakdown to create Gantt
Usage
Gantt
Format
A data frame with 25 rows and 4 variables:
- wp
- character Main Component 
- activity
- character Activities 
- start_date
- character Start Date 
- end_date
- character End Date 
Source
https://github.com/masiraji/tabledown/tree/main/data-raw
Validation Data of Bangla Rotter I-E Scale
Description
This is the validation data of Bangla Rotter's Internal and External Scale.
Usage
Rotter
Format
A data frame with 478 rows and 91 variables:
- id
- double Id 
- sample
- character EFA or CEA 
- Age
- double Age 
- Gender
- character Gender 
- Educational Status
- character Educational Status 
- Education Years
- double COLUMN_DESCRIPTION 
- Income
- double COLUMN_DESCRIPTION 
- Religion
- double COLUMN_DESCRIPTION 
- Marital Status
- double COLUMN_DESCRIPTION 
- Social Stance
- double COLUMN_DESCRIPTION 
- item2
- double COLUMN_DESCRIPTION 
- item3
- double COLUMN_DESCRIPTION 
- item4
- double COLUMN_DESCRIPTION 
- item5
- double COLUMN_DESCRIPTION 
- item6
- double COLUMN_DESCRIPTION 
- item7
- double COLUMN_DESCRIPTION 
- item9
- double COLUMN_DESCRIPTION 
- item10
- double COLUMN_DESCRIPTION 
- item11
- double COLUMN_DESCRIPTION 
- item12
- double COLUMN_DESCRIPTION 
- item13
- double COLUMN_DESCRIPTION 
- item15
- double COLUMN_DESCRIPTION 
- item16
- double COLUMN_DESCRIPTION 
- item17
- double COLUMN_DESCRIPTION 
- item18
- double COLUMN_DESCRIPTION 
- item20
- double COLUMN_DESCRIPTION 
- item21
- double COLUMN_DESCRIPTION 
- item22
- double COLUMN_DESCRIPTION 
- item23
- double COLUMN_DESCRIPTION 
- item25
- double COLUMN_DESCRIPTION 
- item26
- double COLUMN_DESCRIPTION 
- item28
- double COLUMN_DESCRIPTION 
- item29
- double COLUMN_DESCRIPTION 
- O1
- double COLUMN_DESCRIPTION 
- O2
- double COLUMN_DESCRIPTION 
- O3
- double COLUMN_DESCRIPTION 
- O4
- double COLUMN_DESCRIPTION 
- O5
- double COLUMN_DESCRIPTION 
- O6
- double COLUMN_DESCRIPTION 
- O7
- double COLUMN_DESCRIPTION 
- O8
- double COLUMN_DESCRIPTION 
- O9
- double COLUMN_DESCRIPTION 
- O10
- double COLUMN_DESCRIPTION 
- Total_Opennes
- double COLUMN_DESCRIPTION 
- E1
- double COLUMN_DESCRIPTION 
- E2
- double COLUMN_DESCRIPTION 
- E3
- double COLUMN_DESCRIPTION 
- E4
- double COLUMN_DESCRIPTION 
- E5
- double COLUMN_DESCRIPTION 
- E6
- double COLUMN_DESCRIPTION 
- E7
- double COLUMN_DESCRIPTION 
- E8
- double COLUMN_DESCRIPTION 
- Total_Extro
- double COLUMN_DESCRIPTION 
- N1
- double COLUMN_DESCRIPTION 
- N2
- double COLUMN_DESCRIPTION 
- N3
- double COLUMN_DESCRIPTION 
- N4
- double COLUMN_DESCRIPTION 
- N5
- double COLUMN_DESCRIPTION 
- N6
- double COLUMN_DESCRIPTION 
- N7
- double COLUMN_DESCRIPTION 
- N8
- double COLUMN_DESCRIPTION 
- Total_Neuro
- double COLUMN_DESCRIPTION 
- DIR1
- double COLUMN_DESCRIPTION 
- DIR2
- double COLUMN_DESCRIPTION 
- DI3
- double COLUMN_DESCRIPTION 
- DIR4
- double COLUMN_DESCRIPTION 
- DI5
- double COLUMN_DESCRIPTION 
- DIR6
- double COLUMN_DESCRIPTION 
- DI7
- double COLUMN_DESCRIPTION 
- DIR8
- double COLUMN_DESCRIPTION 
- DI9
- double COLUMN_DESCRIPTION 
- DI10
- double COLUMN_DESCRIPTION 
- DIR11
- double COLUMN_DESCRIPTION 
- DI12
- double COLUMN_DESCRIPTION 
- DI13
- double COLUMN_DESCRIPTION 
- DIR14
- double COLUMN_DESCRIPTION 
- DI15
- double COLUMN_DESCRIPTION 
- DI16
- double COLUMN_DESCRIPTION 
- DIR17
- double COLUMN_DESCRIPTION 
- DI18
- double COLUMN_DESCRIPTION 
- DIR19
- double COLUMN_DESCRIPTION 
- DI20
- double COLUMN_DESCRIPTION 
- DI21
- double COLUMN_DESCRIPTION 
- DIR22
- double COLUMN_DESCRIPTION 
- DIR23
- double COLUMN_DESCRIPTION 
- DIR24
- double COLUMN_DESCRIPTION 
- DI25
- double COLUMN_DESCRIPTION 
- DIR26
- double COLUMN_DESCRIPTION 
- DIR27
- double COLUMN_DESCRIPTION 
- DI28
- double COLUMN_DESCRIPTION 
- DI_Total
- double COLUMN_DESCRIPTION 
Source
https://github.com/masiraji/tabledown/tree/main/data-raw
Spot Data
Description
Additional demo data for GanTT
Usage
Spot
Format
A data frame with 29 rows and 3 variables:
- activity
- character Activity 
- spot_type
- character Progress Status 
- spot_date
- character Date of Reporting Progress 
Source
https://github.com/masiraji/tabledown/tree/main/data-raw
A Function for calculating time spent in bed.
Description
This function will help you to calculate the time a person spent in bed based on their sleep log. This type of calculation is very common in sleep research. However, as one can guess, working with dates in R is a bit tricky. This function will ease the task. More importantly you do not require to entry the dates to calculate bed time. Just wake up time and time to go to bed is enough (24 hour format).
Usage
bedTime(x, y)
Arguments
| x | A vector containing time to do to bed. | 
| y | A vector containing time of wake. | 
Value
Calculates time spent in bed in hours. Output class is numeric.
Examples
#Please use 24 hour format.
#Easiest way is to enter the data as character.
bed <-c("20:00", "21:00", "23:00")
wake <-c("6:00", "7:00", "8:00")
bedtime <- bedTime(bed, wake)
A Function for Creating Publication Quality Tables with CFA fit indices.
Description
This function will create publication worthy tables with CFA fit indices from lavaan class object.
Usage
cfa.tab(x, robust = FALSE)
Arguments
| x | A lavaan class object. | 
| robust | If TRUE, will provide robust fit indices when applicable instead of the default indices. | 
A Function for Creating Publication Quality Tables with CFA fit indices from several lavaan objects.
Description
Often researchers are required to show fit indices from several CFA models. This function will create publication worthy tables with CFA fit indices from several lavaan class objects. #' To run this function successfully one need to provide at least two lavaan objects. This command supports up-to five lavaan models.
Usage
cfa.tab.multi(x, y, z = NULL, a = NULL, b = NULL, robust = FALSE)
Arguments
| x | first object of class lavaan (Mandatory). | 
| y | second object of class lavaan (Mandatory). | 
| z | third object of class lavaan (Optional). | 
| a | fourth object of class lavaan (Optional). | 
| b | fifth object of class lavaan (Optional). | 
| robust | If TRUE, will provide robust fit indices when applicable instead of the default indices. | 
A Function for Descriptive data for item analysis.
Description
This function will create a publication ready essential descriptive table for item analysis. Normality is tested using shapiro.test from base stats with Bonferroni Correction.
Usage
des.tab(df, reverse = FALSE)
Arguments
| df | A data frame. | 
| reverse | If TRUE, will provide indicate which items had a negative correlation and reverse them | 
Value
Returns a summary table of descriptives in a data frame structure.
Examples
data <- tabledown::Rotter[, 11:31]
table <- des.tab(data)
A Function for Creating Publication Quality Factor Tables.
Description
This function will create publication worthy factor tables from objects created from psych pack. I have came across this beautiful piece of codes at https://www.anthonyschmidt.co/post/2020-09-27-efa-tables-in-r/ and modified it a bit.
Usage
fac.tab(x, cut, complexity = TRUE)
Arguments
| x | A psych package object. | 
| cut | The value under which all factor loading will be suppressed. | 
| complexity | To add complexity parameters. | 
Value
A publication ready summary table for the Factor analysis conducted by psych Package. Output structure is data frame.
Examples
data <- tabledown::Rotter[, 11:31]
correlations <- psych::polychoric(data, correct = 0)
fa.5F.1 <- psych::fa(r=correlations$rho, nfactors = 5, fm= "pa",rotate ="varimax",
residuals = TRUE, SMC = TRUE, n.obs =428)
table <- fac.tab(fa.5F.1, .3)
#always save the output into an object
A Function for Creating Publication Quality Item Response Theory based item characteristic plot.
Description
This function will create publication worthy Item Response Theory based item characteristic plot using ggplot2 from objects created from mirt pack. Using ggplot2 will enable the user to modify the item characteristic plot.
Usage
ggicc(model, item, theta)
Arguments
| model | A mirt package fitted object. | 
| item | Item number (i.e. 1,2,3,4). | 
| theta | Theta range. Put only one number. Theta =3 will be considered as theta range (-3 to 3). | 
Value
A publication quality item characteristic plot. Output object is a ggplot object.
Examples
data <- tabledown::Rotter[, 11:31]
model <- mirt::mirt(data, model = 1, itemtype = '2PL', SE = TRUE, Se.type = 'MHRM')
plot <- tabledown::ggicc(model, 1, 3)
A Function for Creating Publication Quality Item Response Theory based item information plot.
Description
This function will create publication worthy Item Response Theory based item information plot. using ggplot2 from objects created from mirt pack.
Usage
ggiteminfo(model, item, theta)
Arguments
| model | A mirt package fitted object. | 
| item | Item number (i.e. 1,2,3,4). | 
| theta | Theta range. Put only one number. Theta =3 will be considered as theta range (-3 to 3). | 
Value
A publication quality item information plot.Output object is a ggplot object.
Examples
data <- tabledown::Rotter[, 11:31]
model <- mirt::mirt(data, model = 1, itemtype = '2PL')
plot <- ggiteminfo(model, 1, 3)
A Function for Creating Publication Quality Item Response Theory based reliability plot.
Description
This function will create publication worthy Item Response Theory based based reliability plot with standard error using ggplot2 from objects created from mirt pack. Using ggplot2 will enable the user to modify the Item plot.
Usage
ggreliability(dataframe, model)
Arguments
| dataframe | your data. | 
| model | A mirt package fitted object. | 
Value
A publication quality reliability plot (dashed line). Output object is a ggplot object.
Examples
data <- tabledown::Rotter[, 11:31]
model <- mirt::mirt(data, model = 1, itemtype = '2PL')
plot <- ggreliability(data, model)
A Function for Creating Item Response Theory based reliability plot based on plotly.
Description
This function will create Item Response Theory based based reliability plot with standard error using ggplot2 and plotly from objects created from mirt pack. Using ggplot2 will enable the user to modify the Item plot.
Usage
ggreliability_plotly(dataframe, model)
Arguments
| dataframe | your data. | 
| model | A mirt package fitted object. | 
Value
A publication quality reliability plot (dashed line). Output object is a ggplot object.
Examples
data <- tabledown::Rotter[, 11:31]
model <- mirt::mirt(data, model = 1, itemtype = '2PL')
plot <- ggreliability_plotly(data, model)
A Function for Creating Publication Quality Item Response Theory based test information plot.
Description
This function will create publication worthy Item Response Theory based Test information plot using ggplot2 from objects created from mirt pack. Using ggplot2 will enable the user to modify the Item plot.
Usage
ggtestinfo(dataframe, model)
Arguments
| dataframe | your data. | 
| model | A mirt package fitted object. | 
Value
A publication quality Test information plot. Output object is a ggplot object.
Examples
data <- tabledown::Rotter[, 11:31]
model <- mirt::mirt(data, model = 1, itemtype = '2PL')
plot <- ggtestinfo(data, model)
A Function for Creating Publication Quality Item Response Theory based test information plot with standard error.
Description
This function will create publication worthy Item Response Theory based Test information plot with standard error using ggplot2 from objects created from mirt pack. Using ggplot2 will enable the user to modify the Item plot.
Usage
ggtestinfo_se(dataframe, model)
Arguments
| dataframe | your data. | 
| model | A mirt package fitted object. | 
Value
A publication quality Test information plot with standard error (dashed line). Output object is a ggplot object.
Examples
data <- tabledown::Rotter[, 11:31]
model <- mirt::mirt(data, model = 1, itemtype = '2PL')
plot <- ggtestinfo(data, model)
A Function for Creating Item Response Theory based test information plot with standard error with plotly.
Description
This function will create Item Response Theory based Test information plot with standard error using ggplot2 and plotly from objects created from mirt pack. Using ggplot2 will enable the user to modify the Item plot.
Usage
ggtestinfo_se_ploty(dataframe, model)
Arguments
| dataframe | your data. | 
| model | A mirt package fitted object. | 
Value
A publication quality Test information plot with standard error (dashed line). Output object is a ggplot object.
Examples
data <- tabledown::Rotter[, 11:31]
model <- mirt::mirt(data, model = 1, itemtype = '2PL')
plot <- ggtestinfo_se_ploty(data, model)
A Function for gtExtra package friendly data summary.
Description
This function will gtExtra package friendly data summary using the datafrmae provided psych pack.
Usage
gt_tab(dataframe, recode_code)
Arguments
| dataframe | Dataframe with all items. | 
| recode_code | Recode key | 
Value
A publication ready descriptive summary table in png format.
Examples
data <- tabledown::FFMQ.CFA[, c(9,10,12,14)]
recode_code <- c( "1" = "Never or very rarely true", "2" = "Rarely true",
"3"= "Sometimes true","4" = "Often true","5" = "Very often or always true")
sample_tab <- gt_tab(data,recode_code)
A Function for computing univariate normality test on data frame.
Description
This function will compute normality on entire data set. Sometime in dlookr package p values turns out to be null thus failing to test normality of the data set. This is a good alternative of dlookr function. Here normality is tested using shapiro.test from base stats.
Usage
normality.loop(df, bonf = TRUE, alpha = 0.05)
Arguments
| df | A data frame. | 
| bonf | If TRUE a bonferonni correction will be conducted. | 
| alpha | Desired alpha. | 
Value
Provides normality tests results for all columns in a wide data frame in a list format.
Examples
data <- tabledown::Rotter[, 11:31]
normality.loop(data)
Produce Publication Quality Tables and Plots
Description
The tabledown package provides necessary data frames used throughout the book and some neat functions.
tabledown Data-frames
- Rotter: Psychometric validation data of Bangla Rotter's Internal- External Scale. 
- Gantt and Spot: Two sample data-frames for creating project management Gantt chart. 
- FFMQ.CFA: Structural Validation data of Bangla Five Factor Mindfulness Questionnaire. 
- FFMQ.Val:Correlational Validity evidences of Bangla Five Factor Mindfulness Questionnaire. 
tabledown functions
This packages includes some neat and useful functions to create tables and figures suitable for journal submission:
- fac.tab(): Creates a publication ready table from the output of "psych" package based factor analysis. 
- des.tab(): Creates a publication ready descriptive table of Item analysis with the reporting of normality assumptions. 
- normality.loop(): Compute normality test on the whole data frame. No grouping variable required. 
- bedTime(): Calculate total time spent in bed from the sleep log entry. 
- cfa.tab():Creates a table with necessary fit indices from a "lavaan" class objects. 
- cfa.tab/multi():creates a table with necessary fit indices from several lavaan class objects. 
- ggicc: Creates a ggplot2 based publication ready Item Characteristics Curve from the "mirt" package based item response theory estimations. 
- ggiteminfo: Creates a ggplot2 based publication ready Item Information Curve from the "mirt" package based item response theory estimations. 
- ggtestinfo: Creates a ggplot2 based publication ready Test Information Curve from the "mirt" package based item response theory estimations. 
- ggtestinfo_se: Creates a ggplot2 based publication ready Test Information Curve with standard error from the "mirt" package based item response theory estimations. It is advisable that you load tidyverse along with tabledown