Title: | Identify Memory Patterns in Time Series Using Variance Scale Exponent |
Version: | 1.0.0 |
Description: | Methods for calculating the variance scale exponent to identify memory patterns in time series data. Includes tests for white noise, short memory, and long memory. See Fu, H. et al. (2018) <doi:10.1016/j.physa.2018.06.092>. |
License: | MIT + file LICENSE |
URL: | https://z-my-cn.github.io/vse4ts/ |
BugReports: | https://github.com/z-my-cn/vse4ts/issues |
Imports: | stats |
Suggests: | pracma |
Config/testthat/edition: | 3 |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.1 |
NeedsCompilation: | no |
Packaged: | 2024-06-29 09:27:23 UTC; Dream |
Author: | Mengyang Zheng [aut, cre], Hui Fu [aut] |
Maintainer: | Mengyang Zheng <mengyang.zheng@outlook.com> |
Repository: | CRAN |
Date/Publication: | 2024-07-01 10:20:03 UTC |
vse4ts: Identify Memory Patterns in Time Series Using Variance Scale Exponent
Description
Methods for calculating the variance scale exponent to identify memory patterns in time series data. Includes tests for white noise, short memory, and long memory. See Fu, H. et al. (2018) doi:10.1016/j.physa.2018.06.092.
Author(s)
Maintainer: Mengyang Zheng mengyang.zheng@outlook.com
Authors:
Hui Fu hui_fu@hotmail.com
See Also
Useful links:
Testing Long Memory in Time Series
Description
The function SLmemory.test computes the test statistic for long memory in time series based on the variance scale exponent. The null hypothesis is that the time series is white noise or short memory, while the alternative hypothesis is that the time series has long memory.
Usage
SLmemory.test(x, m = 0.5, n = NULL)
Arguments
x |
A time series vector. |
m |
A parameter to control the number of scales. Default is 0.5. |
n |
The number of scales. If |
Value
A list with class "SLmemory.test" containing the following components:
SLmemory |
the test statistic |
df |
the degrees of freedom of the test. |
p.value |
the p-value of the test. |
References
Fu, H., Chen, W., & He, X.-J. (2018). On a class of estimation and test for long memory. In Physica A: Statistical Mechanics and its Applications (Vol. 509, pp. 906–920). Elsevier BV. https://doi.org/10.1016/j.physa.2018.06.092
Examples
## Test long memory in time series
library(pracma)
set.seed(123)
data("brown72")
x72 <- brown72 # H = 0.72
xgn <- rnorm(1024) # H = 0.50
xlm <- numeric(1024); xlm[1] <- 0.1 # H = 0.43
for (i in 2:1024) xlm[i] <- 4 * xlm[i-1] * (1 - xlm[i-1])
SLmemory.test(x72)
SLmemory.test(xgn)
SLmemory.test(xlm)
Testing White Noise in Time Series
Description
The function Wnoise.test computes the test statistic for white noise in time series based on the variance scale exponent. The null hypothesis is that the time series is independent white noise, while the alternative hypothesis is that the time series is a non-independent stochastic process.
Usage
Wnoise.test(x, m = 0.5, n = NULL)
Arguments
x |
A time series vector. |
m |
A parameter to control the number of scales. Default is 0.5. |
n |
The number of scales. If |
Value
A list with class "Wnoise.test" containing the following components:
Wnoise |
the test statistic |
df |
the degrees of freedom of the test. |
p.value |
the p-value of the test. |
References
Fu, H., Chen, W., & He, X.-J. (2018). On a class of estimation and test for long memory. In Physica A: Statistical Mechanics and its Applications (Vol. 509, pp. 906–920). Elsevier BV. https://doi.org/10.1016/j.physa.2018.06.092
Examples
## Test white noise in time series
library(pracma)
set.seed(123)
data("brown72")
x72 <- brown72 # H = 0.72
xgn <- rnorm(1024) # H = 0.50
xlm <- numeric(1024); xlm[1] <- 0.1 # H = 0.43
for (i in 2:1024) xlm[i] <- 4 * xlm[i-1] * (1 - xlm[i-1])
Wnoise.test(x72)
Wnoise.test(xgn)
Wnoise.test(xlm)
Calculate the Variance Scale Exponent of a Time Series
Description
Calculate the variance scale exponent of a time series.
Usage
vse(x, m = 0.5, n = NULL, type = c("weak", "strong"))
Arguments
x |
A time series vector. |
m |
A parameter to control the number of scales. Default is 0.5. |
n |
The number of scales. If |
type |
The type of variance scale exponent. Default is "weak". |
Value
The variance scale exponent.
References
Fu, H., Chen, W., & He, X.-J. (2018). On a class of estimation and test for long memory. In Physica A: Statistical Mechanics and its Applications (Vol. 509, pp. 906–920). Elsevier BV. https://doi.org/10.1016/j.physa.2018.06.092
Examples
## Compute the variance scale exponent of a time series
# Generate a random time series
set.seed(123)
x <- rnorm(1024) # F = H = 0.5 also d = 0
vse(x)
## Compare the result with the Hurst exponent
library(pracma)
# A time series with Hurst exponent 0.72
data("brown72")
x <- brown72 # F = H = 0.72 also d = 0.22
hurstexp(x)
vse(x)
# A time series with Hurst exponent 0.43
xlm <- numeric(1024); xlm[1] <- 0.1
for (i in 2:1024) xlm[i] <- 4 * xlm[i-1] * (1 - xlm[i-1])
x <- xlm # F = H = 0.43 also d = -0.07
hurstexp(x)
vse(x)